机器学习-支持向量机 1

1、线性可分支持向量机与硬间隔最大化

1.1线性可分支持向量机

        当训练数据集线性可分时,存在无穷个分类超平面。感知机利用误分类最小的策略,求得分类超平面;线性可分支持向量机利用间隔最大化求最有分离超平面,此时解是唯一的。


1.2函数间隔和几何间隔

函数间隔:

在超平面w\cdot x+b=0确定的情况下,|w\cdot x+b|能够相对的表示点x距离超平面的远近,w\cdot x+b的符号与类标记y的符号是否一致表示分类是否正确。

所以y(w\cdot x+b)表示分类的正确性确信度,称为函数间隔

函数间隔定义:

对于给定的训练集T,和超平面(w,b),定义超平面(w,b)关于样本点(x_{i},y_{i})的函数间隔为

                                                                        \hat{\gamma _{i}}=y_{i}(w\cdot x_{i}+b)

定义超平面(w,b)关于数据集T的函数间隔为超平面(w,b)关于T中所有样本点(x_{i},y_{i})的函数间隔之最小值,即

                                                                        \hat{\gamma}=\min_{i=1,\cdots ,N}\hat{\gamma_{i}}

在选择分离超平面时,只有函数间隔还不够,因为只要成比例地改变wb,例如将他们改为2w2b,超平面并没有改变,但是函数间隔却变为原来的两倍。

因此,需要对超平面的法向量加以约束,如规范化,使得间隔时确定的,这时函数间隔成为几何间隔。

当样本点与超平面被正确分类时,点x_{i}与超平面(w,b)的距离是

                                                                  \gamma _{i} = y_{i}\left ( \frac{w}{||w||}\cdot x_{i}+\frac{b}{||w||} \right )

 其中||w||wL_{2}范数。

则有,几何间隔定义:

给定的训练数据集T和超平面(w,b),定义超平面(w,b)关于样本点(x_{i},y_{i})的几何间隔为

                                                                   \gamma _{i} = y_{i}\left ( \frac{w}{||w||}\cdot x_{i}+\frac{b}{||w||} \right )

定义,超平面(w,b)关于数据集T的几何间隔为超平面关于数据集中所有样本点的几何间隔之最小值

                                                                   \gamma=\min_{i=1,\cdots ,N}\gamma_{i}

超平面对于样本点的几何间隔是实例点到超平面的带符号的距离,当样本点被超平面正确分类时,就是实例点到超平面的距离。

函数间隔和几何间隔有如下关系:

                                                                   \gamma_{i} =\frac{\hat{\gamma _{i}}}{||w||}              \gamma =\frac{\hat{\gamma }}{||w||}

如果||w||=1,那么函数间隔和几何间隔相等,当超平面参数成比例地改变,函数间隔也按比例改变,而几何间隔不变


1.3间隔最大化

支持向量机的基本思想:求解能够正确划分训练集并且几何间隔最大的分离超平面。

这里的间隔最大化称为硬间隔最大化。

间隔最大化的直观解释:对训练数据而言,找到几何间隔最大的超平面意味着以充分大的确信度对训练数据进行分类,也就是,不仅将训练数据分开,而且对最难分的实例点(离超平面最近的点)也有足够大的确信度将它们分开,这样的超平面应该对未知的新实例有很好的分类预测能力。

 

关于支持向量和间隔边界

          在线性可分的情况下,训练集中的样本点,与分离超平面距离最近的样本点的实例称为支持向量,支持向量是使下式成立的点

                                                                       y_{i}(w\cdot x_{i}+b)-1=0

对于 y_{i}=+1 的正例点,支持向量在超平面

                                                                        H_{1}:w\cdot x+b=+1

对于 y_{i}=-1 的正例点,支持向量在超平面

                                                                        H_{2}:w\cdot x+b=-1

如下图所示,在 H_{1} 和 H_{2} 上的点就是支持向量

 以上内容为线性可分支持向量机与硬间隔最大化。


 

 

 

 

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值