【支持向量机SVM】 函数间隔设为1原因 详解

本文探讨了在支持向量机(SVM)中,为何通常将函数间隔设置为1。通过分析线性可分SVM的优化问题,展示了函数间隔的变化不会影响超平面的定义以及优化目标和约束条件,从而说明设置为1的合理性。
摘要由CSDN通过智能技术生成

\quad 这几天看SVM,优化问题那里习惯上函数间隔设为1,一直没看到比较令人信服的详解,这里我提一下。

线性可分支持向量机的约束优化原始问题:
max ⁡ w , b γ ^ ∣ ∣ w ∣ ∣ s . t . y i ( w ⋅ x i + b ) ≥ γ ^ , i = 1 , 2 , . . . , N \max \limits_{w,b} \quad \frac{ \hat \gamma}{||w||} \\ s.t. \quad\quad y_i( \bm{w} \cdot x_i + b) \geq \hat\gamma , \quad i=1,2,...,N w,bmaxwγ^s.t.yi(wxi+b)γ^,i=1,2,...,N
上式中 γ ^ \hat \gamma γ^即为函数间隔,且
γ ^ = m i n   y i ( w ⋅ x i + b ) \hat \gamma=min \ y_i(\bm{w} \cdot \bm{x_i} + b) γ^=min yi(

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值