DeepSeek 模型体系呈现多元化分支架构,涵盖基础大语言模型、专用领域模型、架构创新、训练方法优化及部署方案等多个维度。以下从技术演进、核心分支、架构创新、训练方法及部署方案五个维度展开介绍:
一、基础大语言模型分支
1. DeepSeek LLM 系列
- 技术定位:通用语言模型,基于 Transformer 架构,支持 128K 上下文窗口,擅长文本生成、问答、翻译等任务。
- 核心版本:
- V1/V2/V3:逐步演进,V3 采用 MoE 架构,参数规模达 6710 亿(激活参数 370 亿),预训练数据 14.8 万亿 token,在 MMLU、LongBench 等基准测试中表现优异。
- R1/R1-Zero:专注于推理能力,通过纯强化学习训练,擅长数学推理、代码生成等复杂任务。R1-Zero 未使用监督微调,展现出强大的推理能力。
2. DeepSeek-Coder
- 技术定位:针对编程任务优化,支持多种编程语言(如 Python、Java、C++),可用于代码补全、解释、自动修复等场景。
- 核心优势:在 HumanEval 测试中表现优异,支持复杂算法和工程代码场景。
3. DeepSeek-Math
- 技术定位:专门针对数学推理任务优化,结合符号推理和深度学习,提高数学问题求解能力。
- 应用场景:数学竞赛、公式推导、科学计算等。
4. DeepSeek-VL(Vision-Language)
- 技术定位:多模态模型,支持文本、图像等模态数据处理,实现跨模态理解与生成。
- 核心能力:文本生成图像、图像标注、OCR 识别等,适用于 AIGC、数字创意等领域。
5. DeepSeek-Chat
- 技术定位:针对对话任务优化,经过 RLHF 训练,提供自然、连贯的对话体验。
- 应用场景:AI 助手、社交聊天、智能客服等。
二、架构创新分支
1. MoE(Mixture of Experts)架构
- 技术原理:将模型拆分为多个专家子模型,每个子模型专注于不同任务或领域,通过路由机制动态分配计算资源。
- 核心版本:
- DeepSeek-V2:采用细粒度专家划分和共享专家策略,实现 2.9B 激活参数达到 7B 稠密模型效果。
- DeepSeek-V3:MoE 架构升级,参数规模达 6710 亿,激活参数 370 亿,显著降低训练和推理成本。
2. 稀疏注意力机制
- 技术原理:仅计算部分注意力权重,降低计算复杂度,提高训练和推理效率。
- 应用场景:长文本处理、多模态任务等。
三、训练方法创新分支
1. 多词元预测(MTP)
- 技术原理:同时预测多个未来 token,增加训练信号密度,提高数据效率。
- 核心优势:加速模型收敛,提升生成质量。
2. 强化学习
- 技术原理:通过奖励函数和策略更新,优化模型推理能力。
- 核心版本:
- R1-Zero:纯强化学习训练,展现数学推理、代码生成等复杂任务能力。
- R1:在强化学习基础上加入冷启动数据,提升模型稳定性和可读性。
3. 持续学习
- 技术原理:定期收集新数据对模型进行持续训练,保持模型适应性和竞争力。
- 应用场景:实时数据分析、动态环境适应等。
4. 微调
- 技术原理:针对特定应用场景或任务,使用特定数据集对模型进行微调。
- 核心优势:提升模型在特定领域的表现,如医疗、金融等。
四、优化与部署分支
1. 模型压缩与加速
- 技术方案:
- 剪枝:去除冗余参数,减少模型规模。
- 量化:将模型权重和激活值量化为低精度,降低计算和存储成本。
- 知识蒸馏:将大型模型的知识迁移到小型模型中,保持性能的同时减少资源需求。
- 核心版本:
- R1-Distill:基于通义千问或 Llama 蒸馏,参数量缩减至 1.5B-8B,适合边缘设备部署。
2. 多任务学习
- 技术原理:通过共享特征提取网络和任务特定输出层,实现多个任务联合优化。
- 核心优势:提高资源利用率,增强任务协同效应。
3. 本地部署与客户端
- 技术方案:
- 本地部署:支持在本地服务器或设备上部署模型,保障数据隐私和安全性。
- 客户端工具:提供用户友好的客户端界面,方便用户在自己的环境中使用模型。
- 核心版本:
- DeepSeek 推理一体机:集成高性能芯片和优化软件栈,适合企业级部署。
- ChatBox 本地知识库:支持本地知识库构建和查询,提升模型在特定领域的应用效果。
五、应用场景分支
1. 智能化服务领域
- 典型场景:客户交互系统、精准推荐体系、情感交互引擎等。
- 核心优势:提升服务效率和质量,降低人工成本。
2. 专业支持领域
- 典型场景:教育创新应用、智慧医疗体系、金融服务创新等。
- 核心优势:提供专业化、个性化的支持和服务。
3. 产业升级领域
- 典型场景:智能制造系统、智慧城市管理、能源管理系统等。
- 核心优势:推动产业数字化转型和智能化升级。
4. 创意与生活领域
- 典型场景:数字内容生产、媒体运营系统、影视制作平台等。
- 核心优势:激发创意灵感,提升内容生产效率和质量。