win10系统NVIDIA GeForce MX150,驱动程序版本为388.73深度学习环境配置教程

一、安装Anaconda

        1、anaconda官网下载Anaconda | The Operating System for AI,安装步骤安装,安装目录尽量不要在C盘,安装完成后,出现如图所示。

二、安装VS

        1、下载VS2015https://visualstudio.microsoft.com/zh-hans/

        注意:Visual Studio一定要下载Community版本。

三、安装cuDA

       1、根据驱动程序版本和处理器版本选择对应的CUDA版本,此外,CUDA版本不能超过对应电脑设置的版本,如下图

        2、本人电脑配置对应的CUDA版本是9.0,下载链接为:https://developer.nvidia.com/cuda-90-download-archive?continueFlag=495f204000f18929008458474fe85e81&target_os=Windows&target_arch=x86_64&target_version=10&target_type=exelocal

        这里选择network和local都可以,我本人刚开始选的local安装了一下午都没有装上,后来用network完成了。

        具体安装步骤:

        这里尽量用默认地址。

     

这里可能需要等待较长时间

点击同意并继续

​这里选择   自定义后,点击下一步

这里若安装的cuda版本低于规定版本,需要把Dispiay Driver的勾去掉,同时也要把Visual Studio Integration的勾去掉,否则会安装失败。

之后一直下一步,直至安装成功。

安装成功后,在cmd窗口中输入nvcc -V,若输出如图所示,证明安装成功。

 四、安装cuDDN

        这里安装的CUDDN版本应该与驱动和CUDA对应,下载链接为:        https://developer.nvidia.com/rdp/cudnn-archive

下载后为如下压缩包:

压缩包解压缩后按照下图配置

        配置完成后,进入安装目录下的extras\demo_suite文件夹中,然后进入cmd中,输入.\bandwidthTest.exe检验cudnn安装是否安装成功。若安装成功,则显示为:

五、安装pytorch+torchvision

1、输入conda create -n pytorch python=3.7          创建名为pytorch的虚拟环境

2、使用  conda activate pytorch 激活名为pytorch的环境

3、使用  conda info --envs  查看pytorch是否创建成功

4、下载与cuda和cudnn版本对应的torch和torchvision

下载链接为: https://download.pytorch.org/whl/cu90/torch-1.1.0-cp37-cp37m-win_amd64.whl

https://download.pytorch.org/whl/cu90/torchvision-0.3.0-cp37-cp37m-win_amd64.whl 

下载完成后,进入下载文件所在目录,如图

之后使用 pip install安装torch和torchvision,如图

六、测试

首先在命令行输入python,之后输入

import torch

torch.cuda.is_available()

如图:

输出结果为True,则表明环境配置成功。 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值