epoch——使用整个训练样本集传播一次。
一次传播 = 一次前向传播 + 一次后向传播。(所有的训练样本完成一次Forword运算以及一次BP运算)
但是考虑到内存不够用的问题,训练样本们往往并不是全都一起拿到内存中去训练,而是一次拿一个batch去训练,一个batch包含的样本数称为batch size。
iteration——使用batch size个样本传播一次。同样,一次传播 = 一次前向传播 + 一次后向传播。
eg. 我们有1000个训练样本,batch size为100,那么完成一次epoch就需要10个iteration。