Epoch、Batch Size、Iteration三者概念与区别

本文详细介绍了神经网络训练中的核心概念——Epoch、BatchSize和Iteration。Epoch指完整遍历数据集一次,BatchSize是每次训练所用样本数,而Iteration是完成一个Epoch所需的迭代次数。理解这三个概念对于优化模型训练至关重要。例如,一个包含2000个样本的数据集,若BatchSize为500,则一个Epoch需4个Iteration。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


在神经网络训练中,有三个概念:Epoch、Batch Size、Iteration。下面对三者的概念与区别进行介绍。


1 Epoch

Epoch,一次完整训练,即"一代训练"。当一个完整的数据集通过了神经网络一次并且返回了一次,这个过程称为一个Epoch。

需要将完整的数据集在同样的神经网络中传递多次,仅仅更新权重一次或者说使用一个Epoch是不够的,选择合适的Epoch的数量取决于数据的多样性等因素。

在不能将数据一次性通过神经网络的时候,就需要将数据集分成几个Batch,见【2 Batch Size】一节。


2 Batch Size

Batch Size,批量大小,即一次训练所选取的样本数。由于在数据很庞大的时候,一次性将数据输入计算机是不可能的,可以把数据分成小块,一块一块的传递给计算机。在小样本数的数据库中,不使用Batch Size是可行的,而且效果也很好。但是一旦是大型的数据库,一次性把所有数据输进网络,肯定会引起内存的爆炸。所以就提出Batch Size的概念。


3 Iteration

Iteration,算法是迭代的,意思是需要多次使用算法获取结果,以得到最优化结果。迭代是将数据分块后需要完成一个Epoch的次数,即完整的数据集通过了神经网络一次并且返回了一次所需的次数。

在一个Epoch中,Batch数和迭代数是相等的。Batch数是将数据被分成批次的数量,需要与批量大小即Batch Size区分开。


4 示例

比如对于一个有2000个训练样本的数据集,将2000个样本分成大小为500的Batch。那么:

  • 完成一个Epoch需要4个Iteration。
  • Batch数也为4。
  • Batch Size为500。

5 参考文献

1、神经网络训练中,傻傻分不清Epoch、Batch Size和迭代

2、神经网络中Batch Size的理解


END

Epoch(轮次)是指将训练集中的所有样本全部使用一遍的训练过程。在深度学习中,训练集通常会被分成多个批次(Batch),每个批次作为一个小的数据集进行训练。当所有的批次都训练完成后,就完成了一个Epoch的训练。Epoch的数量通常是一个超参数,需要在训练前手动设置。 Batch(批次)是指在训练过程中,将训练集分成的若干个小批次(mini-batch),每个小批次都会经过一次前向传播和反向传播的过程。一个Batch中的数据量可以根据实际情况进行设置,通常是根据计算资源和模型性能来确定。 Iteration(迭代)是指对一个小的数据集(Batch)进行一次训练的过程。在深度学习中,通常将一个Batch中的数据分为若干个小批次(mini-batch),每个小批次都会经过一次前向传播和反向传播的过程,这个过程就是一次迭代(Iteration)。通常,一个Epoch包含多个Iteration。 所以,Epoch是整个数据集上的一次训练,Batch是对数据集进行分批处理,而Iteration是对一个小批次数据进行一次训练。它们三者深度学习中训练模型时的基本单位,每个单位都有自己特定的含义和作用。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *2* *3* [BatchEpochIteration](https://blog.csdn.net/VIAww/article/details/129911981)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 100%"] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值