1.大数存储的实现:作为实现大数存储最常见的一类方法是利用数组。将一个有 n 位的大数存入数组 ,每个数组的一个元素表示一位十进制数。
2.大数加法运算
看下面一个例子:
122345678902345 + 34567890012=122380246792357
在上面的加法运算中 ,并没有考虑参与运算的数的位数 , 即使有小数也是一样。每次运算时只是利用加法运算的规则 对参与运算的每一位进行运算 ,每次运算都是在 10 以内进 行 ,并加上了前面的进位。通过这种运算就可以非常准确的 得到运算结果 ,并且可以不考虑位数和精度的问题。 考虑到计算机的存储问题 ,如果我们采用数组来存储参 与运算的每个加数 ,则需要将上面参与运算的数看成字符 ,并 将原来的数翻转 ,即采用下面的运算方法:
543209876543221 + 21009876543=753297642083221
我们看到运算结果与实际结果相反 ,因此只需要将结果 再翻转一次输出即可得到正确结果。这样做的好处在于一旦 遇到低位向高位进位时 ,不会出现存储上的问题。因为最高 位存储在数组的最后一个元素 ,其后的存储单元可用于存放 进位 ,同时运算是从数组的第一个元素开始的。
具体算法如下:
定义两个字符数组s1[N],s2[N]
定义两个整形数组a[N]={0}和b[N]={0}
通过键盘对s1,s2赋值
strlen函数求出s1,s2长度len1,len2
通过循环将字符串s1中的数值字符从后依次向前转换为数字并赋于整形数组a,其代码如下:
c=0;
for(i=len1-1;i>=0;i--)
a[c++]=s1[i]-'0';
同理将字符串s2转化为整形数组b
采用循环实现加法运算,其代码