高效学习有感

    花了3个小时不到的时候,看完的如何高效学习这本书。这本书上的很多观点,其实米老师都有提到过。像是整体性学习,就是织网,把所有的知识通过联想,挂钩,织成一张网。从任何一个点开始,都能发散的很开,从苹果可以想到牛顿,从牛顿可以想到惯性,从惯性可以想到物理,从物理可以想到物质世界;也可以从苹果想到食物,以及各种食物;想到种子,以及旺盛的生命力;想到白雪公主、七个小矮人和童话的世界;还有apple…。这样一张网就织起来了。

         当然书中并不是这么写的,书中讲的是整体性学习,主要观点是结构,模型和高速公路。结构是指一座座城市,像是你的语文很好,如果把它想象成一座城市,那么就是一个道路四通八达,建设的非常好的城市;像是你的数学不好,那么就是一座只有少数泥泞的小道和外面相通。而模型,就相当于是城市中重要的十字路口;你语文很好,但是语文如何联系到数学,让他们变成一个整体?而高速公路,就是各个城市之间的连接了。这样像不像是在织一张网?

         除了整体性学习的3个观点,还有5个步骤。获取,理解,拓展,纠错和应用。通过感观获取信息,明白信息的表面意思,然后与其他知识建立关系,探究他们的背景、关系,剔除错误的信息,最后将知识运用到各个地方去。若说之前是告诉要织知识网,那么这就是告诉你如何织知识网。像是老师举得被子的例子,首先是看到有一个杯子,然后理解杯子的外形,他的功能是用来喝水的,当然用来呈东西也是可以的。建立他与其他知识的关系,他的颜色的白色的,他的材质是塑料的,他的外形是圆筒的,上面的杯盖是有提手的,为什么要做提手,为什么不像瓷杯一样带把手,而且为什么要带盖子,为了保温,为了方便拿,为了便于携带... ;然后以后你要是生产杯子就可以参考该杯子的设计了。

         当然除了织网和织网的步骤,还教你对于不同的知识采用不同的处理方式。所以将信息分了5类,随意信息,观点信息,过程信息,具体信息和抽象信息。随意信息,各种无规律,采用联想法,挂钩法和压缩法,可以将知识进行打包和关联变成有规律的方便记忆;观点信息,表示支持或反对某种观点,采用图表法可以帮助提取关键思想;过程信息,某种技能信息,如泡茶的过程,从第一步到最后一步该如何做,对于这种信息你需要画大量的时间去练习;具体信息,就是实际中可以看到、听到、触到的信息,采用内在化将信息和多个感观联系起来;抽象信息,如数学,哲学这种,缺少与感观的直接联系。其中随意信息,非常浅显,但是逻辑性差;而抽象信息,非常难以理解,但是逻辑性强。

          还有就是处理信息时提到的一些方法或者说技术都做了详细的说明,对于观点信息可以采用快速阅读的方式收集信息。练习快速阅读的方法有指读法,练习阅读和积极阅读。可以采用笔记流的方式来处理随意信息,以及将大量信息进行压缩。还有比喻法,将我们现在的知识和历史、图像挂上关系;内在化,就是将学习的知识在脑海中形成图像,然后加上其他情感和感观,并且查找图像中的不足或错误;图表法,就是画图和表将概念联系起来等等,都是为了将知识编织成一张网。

         最后,提到高效的学生的5个秘籍,管理能量,健康饮食,不熬夜,一周休息一天;不要“学习”,而是你学会了什么;绝不拖延,建立每周、每日目标;将类似的、散在的工作集中起来批量完成;有组织,拥有日历和做事清单,永远随身携带一个笔记本。

         这本书很好,里面还有很多内容,需要反复的学习,以及练习,若是照着做,一定能提高学习的效率。里面提到的笔记流,我打算练习练习。

深度学习是一种强大的机器学习技术,它模仿人类大脑神经网络的工作原理,能够处理复杂的数据结构和模式识别。在深入探讨深度学习学习感悟之前,我们先要了解几个关键概念: 1. **神经网络**:深度学习的核心是多层的神经网络,每层包含许多节点(或称为神经元),它们通过权重连接进行信息传递和处理。 2. **梯度下降法**:优化算法,用于调整网络中权重,以最小化损失函数,是训练过程中的关键步骤。 3. **反向传播**:用于计算网络中每个参数对损失函数的影响,是实现高效梯度更新的重要机制。 4. **数据的重要性**:深度学习模型的成功很大程度上依赖于大量高质量的数据。数据集的质量和多样性对于模型的泛化能力至关重要。 5. **过拟合和欠拟合**:理解这两个概念可以帮助调整模型复杂度,避免模型过于复杂导致的过拟合,或过于简单导致的欠拟合。 **深度学习学习感悟**: 1. **迭代与耐心**:深度学习模型训练是一个迭代过程,可能需要大量的时间和计算资源。耐心等待模型收敛,以及适时调整参数,是成功的基石。 2. **理论与实践结合**:理论知识是基础,但实际操作中会遇到各种问题,如数值稳定性、硬件限制等。通过解决这些问题,理解和掌握深度学习更加全面。 3. **问题分解**:复杂任务往往能通过设计简单的模块组合而成,这体现了深度学习的层次化和模块化的思考方式。 4. **理解数据**:数据预处理和特征工程是提升模型性能的关键,理解数据分布、异常值和噪声对于模型设计至关重要。 5. **不断探索新模型**:随着深度学习的发展,不断有新的架构出现,如卷积神经网络(CNN)、循环神经网络(RNN)和Transformer等。了解并尝试这些新技术,有助于拓宽视野。 6. **跨领域应用**:深度学习广泛应用于语音识别、图像识别、自然语言处理等领域,不断跨界尝试可以发现更多应用场景和商业价值。 **相关问题--:** 1. 你能举一个实际应用深度学习的例子吗? 2. 如何避免深度学习模型中的过拟合问题? 3. 在深度学习项目中,如何选择合适的优化器? 4. 当面对大量数据时,如何有效地进行数据增强? 5. 你能解释一下Transformer模型与传统RNN的不同之处吗?
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值