pyspark--groupby条件分组

本文详细介绍如何使用PySpark对数据进行条件分组,通过实例演示了如何根据分数判断及格与不及格,并统计各组人数。适用于大数据处理场景,展示了PySpark在数据筛选与分析方面的强大能力。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一些情况下,我们需要将数据按照某种条件划分,一部分满足条件的进行分析,另一部分不满足条件的划分为另一组进行分析。

假设我们有如下数据:

from pyspark.sql import Row, functions as F

col_names = ["name", "score"]
value = [
    ("Red", 100.0),
    ("Origen", 80.0),
    ("Yellow", 55.0),
    ("Green", 90.0),
    ("Cyan", 85.0),
    ("Blue", 50.0),
    ("Purple", 70.0),
]
df = spark.createDataFrame(value, col_names)

现在需要对数据按照score进行划分,大于等于60分的记为及格,其余的记为不及格,统计及格和不及格人数。那么就需要在分组的时候依据score是否大于60的条件划分。代码如下:

df.groupBy((F.when(F.col("score")>=60,"pass").otherwise("flunk")).alias("result")).agg(F.count('*').alias("cnt")).show()

使用when条件语句进行判断,当score大于等于60时,分组记为"pass",否则就记为"flunk",并将该列重命名为"result"。聚合过程中使用count计数即可。结果如下:

+------+---+
|result|cnt|
+------+---+
| flunk|  2|
|  pass|  5|
+------+---+

参考链接:pyspark-dataframe-conditional-groupby

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值