【CSP】计算一个数的约数和

计算约数和的方法有很多,今天举两个例子。

约数和其实就是分解质因数的应用,在比赛中也有广泛的用武之地。

这其中的第十七题就运用到了约数和的公式,所以在CSP的考试中,要了解各种各样的公式方可。

<法一>

化简 $n$ 的约数和通常意味着将一个数的所有约数相加后得到的结果简化为最简形式,特别是当它本身就是合数时,可能会包含一些相同的质因数。这可以通过去除重复的质因子及其幂次来完成。比如,如果 $n$ 是质数的倍数,如 $( n=p^k )$时,其中 $p$ 是质数,$k$ 是正整数,那么约数和 $( p + p^2 + ... + p^k = \frac{p^{k+1}-1}{p-1} )$ 可以进一步化简为 $( p^{k+1} )$

如果 $n$ 不是质数,约数和会包含 $n$ 自身的 $1$ 以及所有质因数的幂,这时只需将每个质因数单独提取出来,然后把幂合并即可。例如,对于 $( n = p_1^{e_1} \times p_2^{e_2} \times \ldots \times p_m^{e_m} )$,约数和为 $( (1+p_1+p_1^2+\cdots+p_1^{e_1})(1+p_2+p_2^2+\cdots+p_2^{e_2})\cdots(1+p_m+p_m^2+\cdots+p_m^{e_m}) )$

<法二>

当然也有某度上是这样证明的,理解起来都差不多。

某度——约数和定理

<例一>

例题:正整数 360 的所有正约数的和是多少?

解:将 360 分解质因数可得

360=2^3*3^2*5^1

由约数和定理可知,360 所有正约数的和为

(2^0+2^1+2^2+2^3)×(3^0+3^1+3^2)×(5^0+5^1)=(1+2+4+8)(1+3+9)(1+5)=15×13×6=1170

可知 360 的约数有 1、2、3、4、5、6、8、9、10、12、15、18、

20、24、30、36、40、45、60、72、90、120、180、360;则它们的和为

1+2+3+4+5+6+8+9+10+12+15+18+20+24+30+36+40+45+60+72+90+120+180+360=1170。

  • 5
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值