BestCoder #85
Problem Description
给你一个数x,查找一个整数y,y>=2,满足两个要求:
- y-x的绝对值最小
- y的质因子组成中每个质因子恰好出现两次
Sample Input
5
1112
4290
8716
9957
9095
Sample Output
23
65
67
244
70
这个题真的好暴力,不过现在想来暴力也是有理由的,打表可以发现1亿以内连个素数最远距离是200多,我记得好像是220,首先这个数最大10^8,每个素因子出现两次说明它一定是一个数k的平方,也就是说,我们要求的是abs(k*k-x)的最小值,对x开方,得到一个数t,从t往上往下枚举,寻找遇到的第一个素因子组成为每个素因子只出现一次的数,取得min(left,right)即可。
#include <queue>
#include <cmath>
#include <cstdio>
#include <cctype>
#include <climits>
#include <cstring>
#include <cstdlib>
#include <iostream>
#include <algorithm>
using namespace std;
const int maxn = 100000;
bool isPrime[maxn+1];
int prime[maxn],cur=0;
void select()
{
memset(isPrime,true,sizeof(isPrime));
isPrime[0]=isPrime[1]=false;
for(int i=2;i<=maxn;i++)
{
if(isPrime[i]) { prime[cur++]=i; for(int j=i+i;j<=maxn;j+=i) isPrime[j]=false; }
}
}
bool isOk(int x)
{
for(int i=0;i<cur;i++)
{
int times=0;
while( x%prime[i]==0 )
{
x = x/prime[i]; times++;
if(times>=2) return false;
}
if(x==1) return true;
}
return true;
}
int main()
{
int T;
scanf("%d",&T);
select();
while(T--)
{
long long x;
scanf("%lld" ,&x);
int k = (int)sqrt(x+0.5);
long long ans = 0x3f3f3f3f3f3f3f3f;
for(int i=k;i>=2;i--)
{
if(isOk(i))
{
ans = min(ans , abs( x-(long long)i*i)); break;
}
}
for(int i=k+1;;i++)
{
if(isOk(i))
{
ans = min(ans , abs( x-(long long)i*i)); break;
}
}
printf("%lld\n",ans);
}
return 0;
}