Candies-差分约束系统

差分约束系统

During the kindergarten days, flymouse was the monitor of his class. Occasionally the head-teacher brought the kids of flymouse’s class a large bag of candies and had flymouse distribute them. All the kids loved candies very much and often compared the numbers of candies they got with others. A kid A could had the idea that though it might be the case that another kid B was better than him in some aspect and therefore had a reason for deserving more candies than he did, he should never get a certain number of candies fewer than B did no matter how many candies he actually got, otherwise he would feel dissatisfied and go to the head-teacher to complain about flymouse’s biased distribution.
snoopy shared class with flymouse at that time. flymouse always compared the number of his candies with that of snoopy’s. He wanted to make the difference between the numbers as large as possible while keeping every kid satisfied. Now he had just got another bag of candies from the head-teacher, what was the largest difference he could make out of it?
Input
The input contains a single test cases. The test cases starts with a line with two integers N and M not exceeding 30 000 and 150 000 respectively. N is the number of kids in the class and the kids were numbered 1 through N. snoopy and flymouse were always numbered 1 and N. Then follow M lines each holding three integers A, B and c in order, meaning that kid A believed that kid B should never get over c candies more than he did.
Output
Output one line with only the largest difference desired. The difference is guaranteed to be finite.
Sample Input
2 2
1 2 5
2 1 4
Sample Output
5

题意,对于第x第孩子和第y个孩子,y孩子获得的糖果最多比x孩子多w个问如何使abs(1-n)最大


这是典型的差分约束系统,满足f(y)-f(x) <= w;
将f替换成dis,则dis(y) <= dis(x) + w; 眼熟的式子,我们在松弛的时候

if(dis[y] > dis[x] + w)
{
    dis[y]= dis[x] + w;
}

以x,y为顶点,w为x->y的边的权
当我们求得从1到n的最短路的时候就已经满足了所有f(y)-f(x)<=w;
现在考虑为什么能够使得abs(1-n)最大
看下面这个简单的图:
有道云笔记和csdn的语法有些不同啊,图没画出来…..1 –> |4| 2表示1->2有一条边,权为4

graph LR
1 --> |4| 2
2 --> |4| 4
1 --> |1| 3
3 --> |1| 2
1 --> |3| 4

从1到4有三条路径,每条边对应一个不等式,先思考1->2两条路径,节点2最多比节点1多2个糖果,否则的话,最短的那条路径不满足要求,而2又是最大的abs(1->2),路径已经满载了,同样,从1->4有三条路径,首先一定要选择最短的路径,这样才能满足不等式,最短路径满载,abs(1->4)最大,所以差分约束可以使用最短路求解,本题比较卡时间,使用dijkstra算法的heap优化,还有就是,vector G[maxn]这种实现在节点很多时似乎很慢,我先使用这种方法超时了一次

#include <vector>
#include <queue>
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
const int maxn = 300010;
const int maxm = 150005;
const int INF = 0x3f3f3f3f;
int n,m;
struct Edge
{
    int from,to,w,next;
};
struct Pair
{
    int v,distance;
    bool operator < (const Pair &t) const
    {
        return distance > t.distance;
    }
};
int pre[maxn];
Edge e[maxm];
priority_queue<Pair> pq;
bool vis[maxn];
int dis[maxn];

int main()
{
    scanf("%d%d" ,&n,&m);
    memset(pre,-1,sizeof(pre));
    int from,to,w;
    for(int i=1; i<=m; i++)
    {
        scanf("%d%d%d" ,&from,&to,&w);
        e[i].from=from;e[i].to=to;e[i].w=w;
        e[i].next=pre[from]; pre[from]=i;
    }
    while(!pq.empty()) pq.pop();
    memset(dis,INF,sizeof(dis));
    memset(vis,0,sizeof(vis));
    dis[1]=0;
    pq.push( (Pair){1,0} );
    while(!pq.empty())
    {
        Pair t = pq.top();
        pq.pop();
        if(t.distance != dis[t.v]) continue;
        vis[t.v]=true;
        for(int i=pre[t.v]; i!=-1; i=e[i].next)
        {
            if(vis[e[i].to]) continue;
            if(dis[e[i].to] > dis[t.v] + e[i].w)
            {
                dis[e[i].to] = dis[t.v] + e[i].w;
                pq.push( (Pair){e[i].to,dis[e[i].to]} );
            }
        }
    }
    printf("%d\n" ,dis[n]);
    return 0;
}
这段程序的目的是计算将糖果均分给两个人所需的最小操作次数。让我们来分析一下为什么输入47会得到7作为结果。 当输入为47时,程序通过递归调用 `divide(candies, count, minCount)` 进行计算。初始调用是 `divide(47, 0, minCount)`。 首先,程序检查是否只剩下一个糖果。由于47不等于1,所以不满足条件。 接下来,程序检查47是否为偶数。由于47不是偶数,所以执行 `else` 分支。 在 `else` 分支中,程序进行了两个递归调用: 1. `divide(candies + 1, count + 1, minCount)`:这是将糖果数量加1的操作,并将操作次数加1。 2. `divide(candies - 1, count + 1, minCount)`:这是将糖果数量减1的操作,并将操作次数加1。 这两个递归调用会产生分支,并继续递归地进行计算。 对于第一个递归调用 `divide(candies + 1, count + 1, minCount)`,它会将糖果数量从47增加到48,并将操作次数从0增加到1。 接着,程序继续递归调用 `divide(candies // 2, count + 1, minCount)`,此时糖果数量为48。由于48是偶数,程序执行 `divide(candies // 2, count + 1, minCount)`,将糖果数量除以2,并将操作次数加1。 然后,程序继续递归调用 `divide(candies // 2, count + 1, minCount)`,此时糖果数量为24。同样地,程序将糖果数量除以2,并将操作次数加1。 接下来,程序继续递归调用 `divide(candies // 2, count + 1, minCount)`,此时糖果数量为12。同样地,程序将糖果数量除以2,并将操作次数加1。 继续递归调用 `divide(candies // 2, count + 1, minCount)`,此时糖果数量为6。同样地,程序将糖果数量除以2,并将操作次数加1。 接下来,程序继续递归调用 `divide(candies // 2, count + 1, minCount)`,此时糖果数量为3。由于3是奇数,程序将糖果数量加1,并将操作次数加1。 然后,程序继续递归调用 `divide(candies // 2, count + 1, minCount)`,此时糖果数量为4。同样地,程序将糖果数量除以2,并将操作次数加1。 最后,程序继续递归调用 `divide(candies // 2, count + 1, minCount)`,此时糖果数量为2。同样地,程序将糖果数量除以2,并将操作次数加1。 此时,糖果数量变为1,满足终止条件。程序将当前的操作次数1与 `minCount[0]` 中的值进行比较,并将较小值更新到 `minCount[0]` 中。 综上所述,最小操作次数为7。因此,输入47得到的结果是7。 如果你有任何其他问题,请告诉我。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值