Roads带限制条件的最短路算法

该博客讨论了一个带有费用限制的最短路径问题。在包含城市和有向边的图中,目标是从城市1出发,找到一条总费用不超过K的最短路径到达城市N。博主分享了一种变形的Dijkstra算法,类似于BFS,通过优先队列来更新满足条件的最短路径。在错误示例中,问题出在Pair的排序上,正确做法是修正排序方式以确保找到符合条件的最短路径。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

比较有启发意义的最短路

N cities named with numbers 1 … N are connected with one-way roads. Each road has two parameters associated with it : the road length and the toll that needs to be paid for the road (expressed in the number of coins).
Bob and Alice used to live in the city 1. After noticing that Alice was cheating in the card game they liked to play, Bob broke up with her and decided to move away - to the city N. He wants to get there as quickly as possible, but he is short on cash.
We want to help Bob to find the shortest path from the city 1 to the city N that he can afford with the amount of money he has.
Input
The first line of the input contains the integer K, 0 <= K <= 10000, maximum number of coins that Bob can spend on his way.
The second line contains the integer N, 2 <= N <= 100, the total number of cities.
The third line contains the integer R, 1 <= R <= 10000, the total number of roads.
Each of the following R lines describes one road by specifying integers S, D, L and T separated by single blank characters :
S is the source city, 1 <= S <= N
D is the destination city, 1 <= D <= N
L is the road length, 1 <= L <= 100
T is the toll (express

<think>好的,我现在需要帮助用户解决如何使用LINGO实现无向图的短路径问题。首先,我得回顾一下用户提供的引用内容,特别是引用[4],里面详细提到了LINGO的模型结构。用户之前可能已经了解了一些基本的短路算法,比如Dijkstra和Floyd,但现在他们想用LINGO来解决这个问题。所以,我需要确保我的回答基于LINGO的实现方法。 首先,我应该考虑LINGO的特点。LINGO是一种用于解决优化问题的建模语言,擅长处理线性、非线性、整数规划等。对于无向图的短路径,用户需要将问题转化为适合LINGO求解的形式。根据引用[4]中的例子,用户需要定义集合、变量、目标函数和约束条件。 接下来,我需要分解问题。无向图的短路径可以视为一个整数规划问题,其中需要确定从起点到终点的路径,使得总权重小。在LINGO中,通常需要定义节点集合和边集合,边的权重,以及决策变量(比如x(i,j)表示是否选择边(i,j))。 然后,考虑目标函数。目标是小化路径的总权重,也就是sum(w(i,j)*x(i,j)),其中w(i,j)是边的权重,x(i,j)是0-1变量。接下来是约束条件。首先,起点必须有且只有一条出边,没有入边。终点必须有且只有一条入边,没有出边。对于中间节点,流入量等于流出量,即流量守恒。 需要注意无向图的处理。在无向图中,边(i,j)和边(j,i)是相同的,所以在数据输入时需要将两个方向的权重设为相同。引用[4]中的例子使用了@for循环来处理这一点,将w(i,j)和w(j,i)相加,确保对称性。另外,对于不存在的边,可能需要设置一个很大的权重(比如1000),以避免被选中。 然后,我需要考虑如何将这些步骤转化为LINGO代码。首先定义集合,比如cities表示节点,roads表示边。数据部分需要输入边的权重,对于不存在的边,可能初始化为0,然后在calc部分进行处理,将对称的边相加,并将不存在的边的权重设为一个大数。 接下来是约束条件的编写。起点和终点的约束,中间节点的流量守恒,以及决策变量x的二进制约束。在LINGO中,使用@sum函数来处理这些约束,例如起点1的出边和为1,入边和为0,终点n的入边和为1。中间节点需要确保流入等于流出。 后,用户可能需要一个具体的例子来参考,所以根据引用[4]中的案例,可以给出一个简单的示例,并解释输出结果。同时,用户可能会遇到的问题包括如何处理无向边、大权重的设置,以及如何确保路径的连续性。此外,还要提醒用户注意节点编号和数据的正确输入,避免错误。 总结来说,我的回答需要分步骤解释LINGO模型的构建,包括集合定义、数据处理、目标函数、约束条件,并提供一个示例代码。同时,要指出可能的注意事项和常见问题,帮助用户正确实现算法。</think>以下是通过LINGO解决无向图短路问题的分步实现方法: ### 一、LINGO建模核心要素 1. **集合定义** 定义节点集合$cities$和边集合$roads$,例如: ```lingo sets: cities/1..n/; ! 节点集合,n为总节点数 roads(cities,cities):w,x; ! w表示边权,x为0-1决策变量 endsets ``` 2. **数据处理** 通过`calc`段处理无向图特性: ```lingo calc: @for(roads(i,j): w(i,j)=w(i,j)+w(j,i)); ! 确保无向图对称性 @for(roads(i,j): w(i,j)=@if(w(i,j) #eq# 0, 1000, w(i,j))); ! 不存在的边设为极大值 endcalc ``` ### 二、目标函数与约束条件 1. **目标函数** 小化路径总权重: $$ \text{min} = \sum_{(i,j)\in roads} w(i,j) \cdot x(i,j) $$ 2. **关键约束** - **起点约束**:$x(1,j)$出度为1,入度为0 ```lingo @sum(cities(j):x(1,j))=1; ! 起点必须有一条出边 @sum(cities(j):x(j,1))=0; ! 不能返回起点 ``` - **终点约束**:$x(k,n)$入度为1 ```lingo @sum(cities(j):x(j,n))=1; ! 终点必须有一条入边 ``` - **中间节点流量平衡**: $$ \sum_{j} x(i,j) = \sum_{j} x(j,i) \quad (\forall i \neq 1,n) $$ ```lingo @for(cities(i)|i #ne#1 #and# i #ne#n: @sum(cities(j):x(i,j))=@sum(cities(j):x(j,i))); ``` ### 三、完整代码示例(以4节点无向图为例) ```lingo model: sets: cities/1..4/; roads(cities,cities):w,x; endsets data: w = 0; enddata calc: w(1,2)=2; w(1,3)=5; w(2,3)=1; w(2,4)=4; w(3,4)=3; @for(roads(i,j): w(i,j)=w(i,j)+w(j,i)); ! 无向图对称处理 @for(roads(i,j): w(i,j)=@if(w(i,j)#eq#0,1000,w(i,j))); endcalc min=@sum(roads:w*x); @for(cities(i)|i#ne#1 #and# i#ne#4: @sum(cities(j):x(i,j))=@sum(cities(j):x(j,i))); @sum(cities(j):x(1,j))=1; @sum(cities(j):x(j,1))=0; @sum(cities(j):x(j,4))=1; @for(roads:@bin(x)); end ``` 输出结果将显示短路径如$1 \rightarrow 2 \rightarrow 3 \rightarrow 4$,总权重为$2+1+3=6$[^4]。 ### 四、注意事项 1. **无向图处理**:必须通过对称赋值保证$w(i,j)=w(j,i)$ 2. **大权重设置**:不存在的边建议设置为$1000$,避免被错误选中 3. **路径连续性**:流量平衡约束确保路径无断裂 4. **扩展性**:可通过增加节点和边数据扩展模型规模
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值