Invitation Cards建立反向边求解最短路

source : poj 1511

题意很简单,让我用markdown画出来就可以了
有道云笔记语法和这里不一样,懒得改了。。。。

graph LR
1 --> 2
2 --> 1
1 --> 3
3 --> 4
2 --> 4
4 --> 50

好吧图很丑,不过勉强能看,每条单向边都有一个权,表示车票,现在我们要从1出发,把n个人送到n个顶点,之后送出去的n个人要回来1,问着一去一回需要多少车票钱,第二组样例为(50+60+70)+(5+15+10)=210

解决方法也很简单,题目所给的正向边跑一次最短路,求和得到sum1,根据题目的正向边,建立反向边组成的图,再从1出发跑一次最短路即可。
这个题给的数据很卡时间,所以这里我们使用堆优化的dijkstra算法

#include <vector>
#include <queue>
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
const int maxn = 1000005;
const int maxm = 1000005;
const int INF = 0x3f3f3f3f;
int n,m;
struct Edge
{
    int from,to,w,next;
};
struct Pair
{
    int v,distance;
    bool operator < (const Pair &t) const
    {
        return distance > t.distance; //需要最小的,所以我们从大到小排序
    }
};
int pre1[maxn];
int pre2[maxn];
Edge e1[maxm];
Edge e2[maxm];
priority_queue<Pair> pq;
bool vis[maxn];
int dis1[maxn];
int dis2[maxn];

int main()
{
#ifdef LOCAL_DEBUG
freopen("input.txt","r",stdin);
#endif // LOCAL_DEBUG
    int T;
    scanf("%d",&T);
    while(T--)
    {
        scanf("%d%d" ,&n,&m);
        memset(pre1,-1,sizeof(pre1));
        memset(pre2,-1,sizeof(pre2));
        int from,to,w;
        for(int i=1; i<=m; i++)
        {
            scanf("%d%d%d" ,&from,&to,&w);
            e1[i].from=from;
            e1[i].to=to;
            e1[i].w=w;
            e1[i].next=pre1[from];
            pre1[from]=i;

            swap(from,to);
            e2[i].from=from;
            e2[i].to=to;
            e2[i].w=w;
            e2[i].next=pre2[from];
            pre2[from]=i;
        }

        while(!pq.empty()) pq.pop();
        memset(dis1,INF,sizeof(dis1));
        memset(vis,0,sizeof(vis));
        dis1[1]=0;
        pq.push( (Pair){1,0} );
        while(!pq.empty())
        {
            Pair t = pq.top();
            pq.pop();
            //如果t.distance == dis1[t.v]说明是t更新的dis数组,现在不相等,说明已经有与t编号相同,距离更小的已经过邻接边了.
            if(t.distance != dis1[t.v]) continue;
            vis[t.v]=true; //从所有可行状态中出队代表已经获得永久标号
            for(int i=pre1[t.v]; i!=-1; i=e1[i].next)
            {
                if(vis[e1[i].to]) continue;
                if(dis1[e1[i].to] > dis1[t.v] + e1[i].w)
                {
                    dis1[e1[i].to] = dis1[t.v] + e1[i].w;
                    pq.push( (Pair){e1[i].to,dis1[e1[i].to]} );
                }
            }
        }

        while(!pq.empty()) pq.pop();
        memset(dis2,INF,sizeof(dis2));
        memset(vis,0,sizeof(vis));
        dis2[1]=0;
        pq.push( (Pair){1,0} );
        while(!pq.empty())
        {
            Pair t = pq.top();
            pq.pop();
            if(t.distance != dis2[t.v]) continue;
            vis[t.v]=true;
            for(int i=pre2[t.v]; i!=-1; i=e2[i].next)
            {
                if(vis[e2[i].to]) continue;
                if(dis2[e2[i].to] > dis2[t.v] + e2[i].w)
                {
                    dis2[e2[i].to] = dis2[t.v] + e2[i].w;
                    pq.push( (Pair){ e2[i].to,dis2[e2[i].to]} );
                }
            }
        }
        long long ans=0;
        for(int i=1;i<=n;i++)
        {
            ans+=(long long)dis1[i]; ans+=(long long)dis2[i];
        }
        printf("%lld\n",ans);
    }
    return 0;
}
Wedding invitation H5是一种免费的电子邀请函平台,可以用来制作婚礼邀请函。H5是指使用HTML5技术,可以在浏览器中直接运行的网页。 Wedding invitation H5提供了各种模板供用户选择,用户只需根据自己的需求修改文字内容、配图等,即可制作出个性化的婚礼邀请函。 Wedding invitation H5的免费性质使其成为了许多新人的首选。相对于传统的印刷邀请函,H5邀请函具有许多优点。首先,H5邀请函制作和分发的成本较低,省去了印刷和邮寄的费用。其次,H5邀请函的传递速度更快,可以通过电子邮件、微信、朋友圈等方式一键分享给亲朋好友。此外,H5邀请函还支持更多的互动功能,如音乐、短视频、交互式地图等,能够为婚礼增添更多的亮点。 使用Wedding invitation H5制作婚礼邀请函非常简便。用户只需打开平台,选择心仪的模板,根据平台提供的编辑工具修改相关内容,如添加婚礼日期、地点、时间等。用户还可以上传自己的照片、视频以及音乐,使邀请函更加个性化。完成编辑后,用户可以预览效果,确认无误后即可保存和分享。Wedding invitation H5还提供了二维码下载和打印邀请函的选项,方便那些更喜欢传统方式的亲友。 总之,Wedding invitation H5的免费提供给了新人制作个性化、高效传达的婚礼邀请函的机会,并且使用简单方便。它在传统邀请函的基础上融入了现代科技,更加贴合了年轻人的需求。如果你正在准备婚礼并需要制作邀请函,Wedding invitation H5是一个不错的选择。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值