【POJ3233】Matrix Power Series

Description

Given a n × n matrix A and a positive integer k, find the sum S = A + A2 + A3 + … + Ak.

Input

The input contains exactly one test case. The first line of input contains three positive integers n (n ≤ 30), k (k ≤ 109) and m (m < 104). Then follow n lines each containing n nonnegative integers below 32,768, giving A’s elements in row-major order.

Output

Output the elements of S modulo m in the same way as A is given.

Sample Input

2 2 4
0 1
1 1

Sample Output

1 2
2 3

思路:

我们要将 ∣ A i − 1 S i − 2 ∣ \begin{vmatrix}A^{i-1}&S_{i-2}\end{vmatrix} Ai1Si2转移到 ∣ A i S i − 1 ∣ \begin{vmatrix}A^{i}&S_{i-1}\end{vmatrix} AiSi1
那么就是 ∣ A i − 1 + A S i − 2 + A i − 1 ∣ \begin{vmatrix}A^{i-1}+A&S_{i-2}+A^{i-1}\end{vmatrix} Ai1+ASi2+Ai1
所以转移矩阵就是 ∣ A 1 0 1 ∣ \begin{vmatrix}A&1\\0&1\end{vmatrix} A011

code:

#include<iostream>
#include<cstdio>
using namespace std;
long long n, m, p;
long long a[900][900];
long long ans[900][900];
long long b[900][900];
void multi()
{
	long long c[100][100];
    for(long long i=1; i<=n*2; i++)
    	for(long long j=1; j<=n*2; j++)
    		c[i][j]=0;
    for(long long i=1; i<=n*2; i++)
    	for(long long j=1; j<=n*2; j++)
    		for(long long k=1; k<=n*2; k++)
    			c[i][j]=(c[i][j]+a[i][k]*ans[k][j])%p;
    for(long long i=1; i<=n*2; i++)
    	for(long long j=1; j<=n*2; j++)
    		ans[i][j]=c[i][j];
}
void multi1()
{
	long long c[100][100];
    for(long long i=1; i<=n*2; i++)
    	for(long long j=1; j<=n*2; j++)
    		c[i][j]=0;
    for(long long i=1; i<=n*2; i++)
    	for(long long j=1; j<=n*2; j++)
    		for(long long k=1; k<=n*2; k++)
    			c[i][j]=(c[i][j]+a[i][k]*a[k][j])%p;
    for(long long i=1; i<=n*2; i++)
    	for(long long j=1; j<=n*2; j++)
    		a[i][j]=c[i][j];
}
void ksm(long long k)
{
	for(long long i=1; i<=n*2; i++)
		ans[i][i]=1;
	while(k!=0)
	{
		if(k&1)
			multi();
		multi1();
		k>>=1; 
	}
}
void multi2()
{
	long long c[100][100];
    for(long long i=1; i<=n*2; i++)
    	for(long long j=1; j<=n*2; j++)
    		c[i][j]=0;
    for(long long i=1; i<=n; i++)
    	for(long long j=1; j<=n*2; j++)
    		for(long long k=1; k<=n*2; k++)
    			c[i][j]=(c[i][j]+b[i][k]*ans[k][j])%p;
    for(long long i=1; i<=n; i++)
    	for(long long j=1; j<=n*2; j++)
    		b[i][j]=c[i][j];
}
int main()
{
	scanf("%lld%lld%lld", &n, &m, &p);
	for(long long i=1; i<=n; i++)
		for(long long j=1; j<=n; j++)
			scanf("%lld", &a[i][j]), b[i][j]=a[i][j];
	for(long long i=1; i<=n; i++)
		for(long long j=n+1; j<=n*2; j++)
			if(i+n==j)
				a[i][j]=1;
	for(long long i=n+1; i<=n*2; i++)
		for(long long j=n+1; j<=n*2; j++)
			if(i==j)
				a[i][j]=1;
	ksm(m);
	multi2();
	for(long long i=1; i<=n; i++, cout<<endl)
		for(long long j=n+1; j<=n*2; j++)
			printf("%lld ", b[i][j]);
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值