【集训DAY1】Maximum benefit【离散化】【贪心】

119 篇文章 0 订阅
8 篇文章 0 订阅

在这里插入图片描述

题目大意:

给出n个任务,每个任务有价值,而且必须在s[i]到t[i]时刻内的某一时刻完成,问最大价值

思路:

我们首先发现,最多有n个时刻被选,所以那么多的时刻是没有用的
我们直接离散化掉
怎么离散化呢?
肯定是按每个任务最开始的时刻来离散化。
然后我们发现,价值大的可以往前放。因为如果一个更小的放了,那肯定是更大的放更优。
那我们就一步一步实现就行了。

c o d e code code

#include<iostream>
#include<cstdio>
#include<algorithm>

using namespace std;

long long n;
struct node
{
	long long v, s, t;
}a[5010];
long long S[5010], b[10010];
long long f[5010];

bool cmp(node x, node y)
{
	return x.s<y.s;
}

bool cmp2(node x, node y)
{
	return x.v>y.v;
}

void get_point()
{
	for(long long i=1; i<=n; i++)
		S[i]=max(S[i-1]+1, a[i].s);
}

void lsh()
{
	for(long long i=1; i<=n; i++)
	{
		int j=1;
		while(S[j]<a[i].s) j++;
		a[i].s=j;
	}
}

bool find_(long long x, long long i)
{
	if(S[x]>a[i].t)
		return 0;
	if(f[x]==0)
	{
		f[x]=i;
		return 1;
	}
	long long j=f[x];
	if(a[i].t>a[j].t)
		return find_(x+1, i);
	else if(find_(x+1, j))
	{
		f[x]=i;
		return 1;
	}
	return 0;
}

int main()
{
	scanf("%lld", &n);
	for(long long i=1; i<=n; i++)
		scanf("%lld%lld%lld", &a[i].s, &a[i].t, &a[i].v);
	sort(a+1, a+1+n, cmp);
	get_point();
	sort(a+1, a+1+n, cmp2);
	lsh();
	long long ans=0;
	for(long long i=1; i<=n; i++)
		if(find_(a[i].s, i))
			ans+=a[i].v;
	printf("%lld", ans);
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值