【集训DAY12】X equation 【高精度】【数学】

119 篇文章 0 订阅
本文介绍了一种使用C++实现高精度计算的方法,通过快速幂取模计算组合数C(n, k),其中n和k分别为输入参数。代码中定义了快速幂函数qpow,并实现了乘法cheng和除法chu操作,最终计算并输出组合数结果。该算法适用于组合数学在编程竞赛或高精度计算场景中的应用。
摘要由CSDN通过智能技术生成

在这里插入图片描述

思路:

我们直接算出g(x),然后发现就是一道组合数学
记得要高精

c o d e code code

#include<iostream>
#include<cstdio>

#define ll long long

using namespace std;

ll n, k;
ll a[10001];

ll qpow(ll x, ll k, ll mod) {
	ll ans = 1;
	for(; k; k >>= 1, x = x * x % mod) if(k & 1) ans = ans * x % mod;
	return ans;
}

void cheng(ll x) {
	ll g = 0;
	for(ll i = 10000; i >= 1; i --) {
		a[i] = a[i] * x + g;
		g = a[i] / 10;
		a[i] %= 10;
	}
}

void chu(ll x) {
	ll g = 0;
	for(ll i = 1; i <= 10000; i ++) {
		ll p = (g * 10 + a[i]) % x;
		a[i] = (g * 10 + a[i]) / x;
		g = p;
	}
}

// n! / m!(n-m)!
void C(ll n, ll m) {
	a[10000] = 1;
	for(ll i = m + 1; i <= n; i ++) cheng(i);
	for(ll i = 2; i <= n - m; i ++) chu(i);
}

void write_() {
	ll i = 1;
	while(a[i] == 0 && i + 1 <= 10000) i ++;
	while(i <= 10000) printf("%lld", a[i]), i ++;
}

int main() {
	scanf("%lld%lld", &k, &n);
	ll m = qpow(n, n, 1000);
	C(m - 1, k - 1);
	write_();
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值