nlp
liuzh(少昊)
机器学习工程师,python研发工程师
展开
-
图解Word2vec,读这一篇就够了
图解Word2vec,读这一篇就够了转载 2019-04-07 13:14:23 · 1317 阅读 · 0 评论 -
神奇的谷歌最强NLP模型BERT
干货推荐谷歌最强NLP模型BERT如约开源,12小时GitHub标星破1500,即将支持中文转载 2019-05-21 11:53:55 · 311 阅读 · 0 评论 -
卷积神经网络(CNN)在TensorFlow文本分类中的应用
好文推荐卷积神经网络(CNN)在TensorFlow文本分类中的应用英文原版Implementing a CNN for Text Classification in TensorFlowgithub源码cnn-text-classification-tf转载 2019-05-07 20:46:28 · 349 阅读 · 0 评论 -
理解NLP中的卷积神经网络(CNN)
好文推荐理解NLP中的卷积神经网络(CNN)英文原版Understanding Convolutional Neural Networks for NLP转载 2019-05-07 17:15:07 · 447 阅读 · 0 评论 -
完备的 AI 学习路线,最详细的中英文资源整理
干货推荐完备的 AI 学习路线,最详细的中英文资源整理转载 2019-05-06 10:50:11 · 339 阅读 · 0 评论 -
放弃幻想,全面拥抱Transformer:自然语言处理三大特征抽取器(CNN/RNN/TF)比较
好文推荐放弃幻想,全面拥抱Transformer:自然语言处理三大特征抽取器(CNN/RNN/TF)比较转载 2019-04-25 11:34:50 · 337 阅读 · 0 评论 -
效果惊人的GPT 2.0模型:它告诉了我们什么
好文推荐效果惊人的GPT 2.0模型:它告诉了我们什么转载 2019-04-28 13:15:51 · 1408 阅读 · 0 评论 -
BERT大火却不懂Transformer?读这一篇就够了
好文推荐BERT大火却不懂Transformer?读这一篇就够了转载 2019-04-26 12:22:38 · 406 阅读 · 0 评论 -
从Word Embedding到Bert模型—自然语言处理中的预训练技术发展史
干货推荐从Word Embedding到Bert模型—自然语言处理中的预训练技术发展史转载 2019-04-22 11:23:37 · 300 阅读 · 0 评论 -
动手实践bert+BiLstm+crf
网上大部分都是使用ChinaPeoplesDailyNerCorpus语料做的,真正应用到自已的语料和需求中还是有一些坑,这里整理记录一下首先明确语料需要处理成什么格式,贴图理解一下这里面需要搞清楚几点,我们的语料最小粒度是字级别的,然后每句话结束会有一个空行(当年踩过的坑),后面的标记简单科普一下,专业人士直接跳过,大O表示非实体,B-ORD表示机构开头第一个字,I-ORD表示中间,有些预...原创 2019-06-26 17:08:06 · 18804 阅读 · 19 评论