网上大部分都是使用ChinaPeoplesDailyNerCorpus语料做的,真正应用到自已的语料和需求中还是有一些坑,这里整理记录一下
首先明确语料需要处理成什么格式,贴图理解一下
这里面需要搞清楚几点,我们的语料最小粒度是字级别的,然后每句话结束会有一个空行(当年踩过的坑),后面的标记简单科普一下,专业人士直接跳过,大O表示非实体,B-ORD表示机构开头第一个字,I-ORD表示中间,有些预料可能会有结束标记,这里只使用了开头和中间,当然你可能还需要识别人名(B-PER, I-PER),地名(B-LOC, I-LOC),同理。
接下来就要考虑如何将一段话或者一篇文章处理成这种格式了
这里参考了一篇文章https://www.cnblogs.com/combfish/p/7830807.html其中的代码直接贴在下面了,不想看的可以直接跳过看后面分析
import re
# txt2ner_train_data turn label str into ner trainable data
# s :labeled str eg.'我来到[@1999年#YEAR*]的[@上海#LOC*]的[@东华大学#SCHOOL*]'
# save_path: ner_trainable_txt name
def str2ner_train_data(s,save_path):
ner_data = []
result_1 = re.finditer(r'\[\@', s)
result_2 = re.finditer(r'\*\]', s)
begin = []
end = []
for each in result_1:
begin.append(each.start())
for each in result_2:
end.append(each.end())
assert len(begin) == len(end)
i = 0
j = 0
while i < len(s):
if i not in begin:
ner_data.append([s[i], 0])
i = i + 1
else:
ann = s[i + 2:end[j] - 2]
entity, ner = ann.rsplit('#')
if (len(entity) == 1):
ner_data.append([entity, 'S-' + ner])
else:
if (len(entity) == 2):
ner_data.append([entity[0], 'B-' + ner])
ner_data.append([entity[1], 'E-' + ner])
else:
ner_data.append([entity[0], 'B-' + ner])
for n in range(1, len(entity) - 1):
ner_data.append([entity[n], 'I-' + ner])
ner_data.append([entity[-1], 'E-' + ner])
i = end[j]
j = j + 1
f = open(save_path, 'w', encoding='utf-8')
for each in ner_data:
f.write(each[0] + ' ' + str(each[1]))
f.write('\n')
f.close(