动手实践bert+BiLstm+crf

本文介绍了将BERT与BiLSTM、CRF结合应用于命名实体识别的过程,包括语料处理、模型构建和训练。通过自定义格式处理语料,利用kashgari库进行模型搭建,使用BERT预训练模型进行字编码,并通过BiLSTM和CRF进行实体识别。实践结果显示模型在前两轮训练中表现出良好的效果。
摘要由CSDN通过智能技术生成

网上大部分都是使用ChinaPeoplesDailyNerCorpus语料做的,真正应用到自已的语料和需求中还是有一些坑,这里整理记录一下

首先明确语料需要处理成什么格式,贴图理解一下
在这里插入图片描述
这里面需要搞清楚几点,我们的语料最小粒度是字级别的,然后每句话结束会有一个空行(当年踩过的坑),后面的标记简单科普一下,专业人士直接跳过,大O表示非实体,B-ORD表示机构开头第一个字,I-ORD表示中间,有些预料可能会有结束标记,这里只使用了开头和中间,当然你可能还需要识别人名(B-PER, I-PER),地名(B-LOC, I-LOC),同理。

接下来就要考虑如何将一段话或者一篇文章处理成这种格式了
这里参考了一篇文章https://www.cnblogs.com/combfish/p/7830807.html其中的代码直接贴在下面了,不想看的可以直接跳过看后面分析

import re
 
# txt2ner_train_data turn label str into ner trainable data
# s :labeled str  eg.'我来到[@1999年#YEAR*]的[@上海#LOC*]的[@东华大学#SCHOOL*]'
# save_path: ner_trainable_txt name
def str2ner_train_data(s,save_path):
    ner_data = []
    result_1 = re.finditer(r'\[\@', s)
    result_2 = re.finditer(r'\*\]', s)
    begin = []
    end = []
    for each in result_1:
        begin.append(each.start())
    for each in result_2:
        end.append(each.end())
    assert len(begin) == len(end)
    i = 0
    j = 0
    while i < len(s):
        if i not in begin:
            ner_data.append([s[i], 0])
            i = i + 1
        else:
            ann = s[i + 2:end[j] - 2]
            entity, ner = ann.rsplit('#')
            if (len(entity) == 1):
                ner_data.append([entity, 'S-' + ner])
            else:
                if (len(entity) == 2):
                    ner_data.append([entity[0], 'B-' + ner])
                    ner_data.append([entity[1], 'E-' + ner])
                else:
                    ner_data.append([entity[0], 'B-' + ner])
                    for n in range(1, len(entity) - 1):
                        ner_data.append([entity[n], 'I-' + ner])
                    ner_data.append([entity[-1], 'E-' + ner])
 
            i = end[j]
            j = j + 1
 
    f = open(save_path, 'w', encoding='utf-8')
    for each in ner_data:
        f.write(each[0] + ' ' + str(each[1]))
        f.write('\n')
    f.close(
评论 19
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值