傅里叶级数

傅里叶级数

一、总论

​ 最重要的一点是,傅里叶级数不是傅里叶展开,由 f ( x ) f(x) f(x) 生成的傅里叶级数可能跟原来的 f ( x ) f(x) f(x) 不相等,没啥大联系,就像泰勒级数也不一定等价于原函数,只能在收敛半径内等价一样。只有理清了这一点,才知道我们看待傅里叶级数的角度。


二、生成傅里叶级数

​ 生成傅里叶级数用的是类似施密特正交化的方法,这个方法可以把一组线性无关的向量,转换成一组线性无关且正交的向量,其实可以将 f ( x ) f(x) f(x) 看做一个向量(函数),由一大堆不知道多少个,也不知道是什么的其他向量(函数)组成,但是可以用一组由相互正交的三角函数组成的向量组(函数组)来代替他们,代替的过程中就写出来了。

​ 那我们先看一下函数的正交和三角函数的正交。函数的正交被定义为为当
∫ a b f ( x ) g ( x ) d x = 0 \int_a^bf(x)g(x)dx=0 abf(x)g(x)dx=0
时, f ( x ) f(x) f(x) g ( x ) g(x) g(x) 正交,这里需要注意,a,b值的确立是随便的,随便给个值都可以定义正交,然后都可以进行施密特正交化。但是我们说,对于三角函数来说当ab刚好差周期倍数的时候,三角函数会呈现很好的性质,因为最小正周期最大的是 sin ⁡ x , cos ⁡ x \sin x,\cos x sinx,cosx 所以我们一般取 a = 0 , b = 2 π a=0, b=2\pi a=0,b=2π 或者 a = − π , b = π a=-\pi,b=\pi a=π,b=π 两者并没有任何不同,可以放心大胆的使用。

​ 当确定ab的值后,我们发现,当 sin ⁡ m x , sin ⁡ n x \sin mx,\sin nx sinmx,sinnx 的m与n的值不等,两个函数不正交,于是我们就可以推导出如下展开
f ( x ) ∼ a 0 2 + ∑ n = 1 ∞ ( a n cos ⁡ n x + b n sin ⁡ n x ) f(x)\sim\frac{a_0}{2}+\sum_{n=1}^\infty(a_n\cos nx+b_n\sin nx) f(x)2a0+n=1(ancosnx+bnsinnx)

a n = 1 π ∫ 0 2 π f ( x ) cos ⁡ n x d x a_n=\frac{1}{\pi}\int_{0}^{2\pi}f(x)\cos nx dx an=π102πf(x)cosnxdx

b n = 1 π ∫ 0 2 π f ( x ) sin ⁡ n x d x b_n=\frac{1}{\pi}\int_{0}^{2\pi}f(x)\sin nxdx bn=π102πf(x)sinnxdx

还是要再次强调,这是生成而非相等。

对于更加一般的周期函数,我们有公式
f ( x ) ∼ a 0 2 + ∑ n = 1 ∞ ( a n cos ⁡ n x + b n sin ⁡ n x ) f(x)\sim\frac{a_0}{2}+\sum_{n=1}^\infty(a_n\cos nx+b_n\sin nx) f(x)2a0+n=1(ancosnx+bnsinnx)

a n = 2 T ∫ 0 T f ( x ) cos ⁡ n 2 π T x d x a_n=\frac{2}{T}\int_{0}^{T}f(x)\cos n\frac{2\pi}{T} xdx an=T20Tf(x)cosnT2πxdx

b n = 2 T ∫ 0 T f ( x ) sin ⁡ n 2 π T x d x b_n=\frac{2}{T}\int_{0}^{T}f(x)\sin n\frac{2\pi}{T} xdx bn=T20Tf(x)sinnT2πxdx

这样给出的一般公式要比用代换给出的更加自然,代换忽略了施密特原理,只是单纯的数学推导,所以记忆起来有难度。


三、傅里叶级数的性质

​ 傅里叶级数的性质时相当好的,当 f ( x ) f(x) f(x)分段光滑的,他在连续处一般都是等于 f ( x ) f(x) f(x) 的,只有在 f ( x ) f(x) f(x) 间断点会等于两侧 f ( x ) f(x) f(x) 左极限和 f ( x ) f(x) f(x) 右极限的平均值,将这两种情况概括一下,即:
a 0 2 + ∑ n = 1 ∞ ( a n cos ⁡ n x + b n sin ⁡ n x ) = f ( x + 0 ) + f ( x − 0 ) 2 \frac{a_0}{2}+\sum_{n=1}^\infty(a_n\cos nx+b_n\sin nx)=\frac{f(x+0)+f(x-0)}{2} 2a0+n=1(ancosnx+bnsinnx)=2f(x+0)+f(x0)
上面这个定理是很好使的,但是还不够抽象,在书上的13.2详细讨论了傅里叶级数的性质,概括一下就是——只讨论了且详细讨论了逐点收敛性质,其他性质如一致收敛、可积、可导都没有讨论。逐点收敛的性质时建立在绝对可积和可积的条件上的,大概是一个很弱的条件。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值