气体动理论

气体动理论

一、理想气体状态方程

p V = m M R T pV = \frac{m}{M}RT pV=MmRT

​ 在这个公式里,需要三点需要强调:

  • m M \frac{m}{M} Mm 不可以简写为 n n n ,这是因为在这本教材里, n n n分子数密度,不是分子的物质的量

  • M M M 是以 Kg 为单位的,所以需要比常见的化学单位制小三个数量级,不要在计算的时候出错

  • R R R普适气体常量 R = 8.31 J / ( m o l ⋅ K ) R = 8.31J/(mol\cdot K) R=8.31J/(molK)

    理想气体状态方程还有另一个形式,这个形式好像更加强调气体的微观特征
    p = n k T p = nkT p=nkT
    其中:

  • n n n 是分子数密度

  • k k k玻尔兹曼常量,有 k ⋅ N A = R k\cdot N_A = R kNA=R k = 1.38 ∗ 1 0 − 23 J / K k = 1.38 *10^{-23}J/K k=1.381023J/K

  • k k k 出现的地方好像都很微观。

二、压强,平动动能,温度的关系

​ 我们可以用统计规律推导出压强与分子动能的关系,有
p = 2 3 n ε k ˉ p = \frac{2}{3}n\bar{\varepsilon_k} p=32nεkˉ
​ 这是一个统计规律,而不是一个力学规律

​ 当然再结合我们的理想气体状态方程,就会导出动能和温度的关系
ε k ˉ = 3 2 k T \bar{\varepsilon_k} = \frac{3}{2}kT εkˉ=23kT
​ 这个公式好就好在,是一个单元的函数,这说明气体的温度是气体分子平均平动动能的量度

三、理想气体的内能

​ 理想气体的内能不只包括平动动能还包括转动动能振动动能。那么其他的能量是怎样的呢?

能量按自由度均分定理告诉我们:在温度为 T 的平衡态下,气体分子任一自由度的平均动能都等于 1 2 k T \frac{1}{2} k T 21kT ,但是需要注意的是,对于每个振动自由度,每个分子除了一份平均振动动能,还有一份平均弹性势能

​ 按照这个理论,我们有公式
E 0 = N A ( i 2 k T ) = i 2 R T E_0 = N_A(\frac i 2 kT)=\frac i 2 RT E0=NA(2ikT)=2iRT
​ 这是 1 mol 理想气体内能的表达式。

​ 需要注意的是,理想气体是没有分子间势能的。所以动能就是内能。

四、麦克斯韦速率分布率

f ( v ) = 4 π ( m 0 2 π k T ) 3 2 ⋅ e − m 0 v 2 2 k T ⋅ v 2 f(v) = 4\pi (\frac{m_0}{2\pi kT})^{\frac{3}{2}}\cdot e^{-\frac{m_0 v^2}{2kT}}\cdot v^2 f(v)=4π(2πkTm0)23e2kTm0v2v2

​ 这是最基础的形式,其实只需要意识到这是一个 v 的一元函数就好了 f ( v ) = a ⋅ e − b v 2 ⋅ v 2 f(v) = a\cdot e^{-bv^2}\cdot v^2 f(v)=aebv2v2​ 。

​ 由这个式子,我们可以得出一些特殊的值
v ˉ = ∫ 0 ∞ v f ( v ) d v = 8 R T π M \bar v = \int^\infty_0 vf(v)dv=\sqrt\frac{8RT}{\pi M} vˉ=0vf(v)dv=πM8RT

v 2 ˉ = 3 R T π M \sqrt{\bar {v^2}} = \sqrt\frac{3RT}{\pi M} v2ˉ =πM3RT
v p = 2 R T π M v_p = \sqrt\frac{2RT}{\pi M} vp=πM2RT
​ 其中, v p v_p vp最概然速率,是用求导获得的,另外两个都可以用分部积分获得。

​ 为了估算一个狭窄区间的分子数百分比,可以将上式转换成另一种形式,即
4 π ⋅ W 2 e − W 2 Δ W \frac{4}{\sqrt{\pi}}\cdot W^2 e^{-W^2}\Delta W π 4W2eW2ΔW
​ 其中 W = v v p W=\frac{v}{v_p} W=vpv​,其实就是以直代曲的思想。

​ 其实上面的公式还不是最本质的公式,最本质的公式是
Δ N = n 0 ( m 0 2 π k T ) 3 2 e − ε k T Δ v x Δ v y Δ v z Δ x Δ y Δ z \Delta N = n_0(\frac{m_0}{2\pi kT})^\frac 3 2 e^{-\frac{\varepsilon}{kT}}\Delta v_x \Delta v_y\Delta v_z\Delta x\Delta y\Delta z ΔN=n0(2πkTm0)23ekTεΔvxΔvyΔvzΔxΔyΔz
​ 其中 n 0 n_0 n0 是某个基准点的气体分子密度。 Δ N \Delta N ΔN 是分子数。

​ 在麦克斯韦能量分布律中,将 ε \varepsilon ε 视为 ε k \varepsilon_k εk​ ,并且只对位置分量进行积分,就可以得到最上面的式子。

五、玻尔兹曼分布律

​ 玻尔兹曼是将速度量进行积分,就可以得到玻尔兹曼分布律
Δ N = n 0 e − ε p k T Δ x Δ y Δ z \Delta N = n_0 e^{-\frac{\varepsilon_p}{kT}}\Delta x\Delta y\Delta z ΔN=n0ekTεpΔxΔyΔz
​ 注意这里的 ε p \varepsilon_p εp 是分子的势能,但是不是分子间势能,所以这依然是相对于理想气体而言的。将其转换为更常见的形式(结合重力势能表达式)
n = n 0 e − m 0 g z k T n = n_0e^{-\frac{m_0gz}{kT}} n=n0ekTm0gz
​ 如果再结合 p = n k T p = nkT p=nkT 就可以得到
p = p 0 e − M g z R T p = p_0e^{-\frac{Mgz}{RT}} p=p0eRTMgz

六、分子碰撞和自由程

Z ˉ = 2 d 2 v ˉ n = 2 d 2 v ˉ p k T \bar Z = \sqrt2 d^2 \bar v n =\sqrt2 d^2 \bar v \frac{p}{kT} Zˉ=2 d2vˉn=2 d2vˉkTp

λ ˉ = k T 2 π d 2 p \bar\lambda =\frac{kT}{\sqrt{2}\pi d^2 p} λˉ=2 πd2pkT

  • 15
    点赞
  • 42
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值