目录
离散对数问题(Discrete Logarithm Problem,DLP)
ECDH (Elliptic Curve Diffie-Hellman)算法
ECDHE(Elliptic Curve Diffie-Hellman Ephemeral)算法
基本原理
密钥交换算法的基本原理是使得两个通信方能够在不安全的通信渠道上安全地协商出一个共享密钥,该共享密钥用于对后续通信进行加密,以确保通信信息的机密性和完整性。密钥交换算法通常利用数学上的难题来确保即使交换过程被窃听,窃听者也不能轻易推导出共享密钥。
以下是密钥交换算法的一些基本概念:
公开参数
在大多数密钥交换协议中,参与者需要预先同意一些公开的参数。这些参数通常是通过不安全的渠道公开交换的,因此不会泄露任何秘密信息。例如,在Diffie-Hellman密钥交换中,公开参数是一个大素数和一个基数。
私有密钥
每个参与者都会生成一个私有密钥,这个密钥是秘密的,通常是通信设备自己保存,不会通过不安全的渠道公开。私有密钥在密钥交换过程中起到了至关重要的作用。
公开密钥
每个参与者都会使用公开参数和自己的私有密钥生成一个公开密钥。公开密钥在不安全的渠道上传输,虽然它是由私有密钥和公开参数生成的,但依然无法直接推导出私有密钥。
密钥推导
当通信双方收到对方的公开密钥后,他们将使用自己的私有密钥和对方的公开密钥来生成共享密钥。重要的是,尽管窃听者可能知道公开参数和双方的公开密钥,但没有私有密钥,他们不能计算出共享密钥。
数学难题
密钥交换算法通常基于数学上的难题,如离散对数问题或椭圆曲线上的类似问题。这些问题在一定条件下是计算上可行的,但在没有足够信息的情况下(例如,没有私有密钥)是极其困难的。
前向保密性(Forward Secrecy)
一些密钥交换算法,如ECDHE,提供了前向保密性。这意味着即使在将来某个时刻一个参与者的私有密钥被发现,之前的通信记录也无法被解密,因为每次通信都使用了不同的临时密钥对。
相关数学
基本数学公式
先来回忆一下相关的数学公式
%加法
(a + b) mod n = [(a mod n) + (b mod n)] mod n
%减法
(a - b) mod n = [(a mod n) - (b mod n) + n] mod n
%乘法
(a * b) mod n = [(a mod n) * (b mod n)] mod n
%指数律
(a^b) mod n = [(a mod n)^b] mod n
%指数分解
(a^(b+c)) mod n = [(a^b mod n) * (a^c mod n)] mod n
%指数乘法
(a^(b*c)) mod n = [(a^b mod n)^c] mod n
离散对数问题
(Discrete Logarithm Problem,DLP)
在数学中,一个群(Group)是一种代数结构,由一组元素以及一个在这些元素上定义的操作(通常称为群运算)组成,满足以下四个基本性质:
- 封闭性(Closure): 对于群内的任意两个元素a和b,a和b的群运算的结果也必须在群内。
- 结合律(Associativity): 对于群内的任意三个元素a、b和c,(ab)c和a(bc)有相同的结果(这里的
*
代表群运算)。 - 单位元素(Identity element): 群内必须存在一个特殊的元素e,对于群内的任意元素a,e和a的群运算结果仍然是a。
- 逆元素(Invertibility): 对于群内的任意元素a,必须存在一个元素b(称为a的逆元素),使得a和b的群运算结果是单位元素e。
一个有限群是指群中元素的数量是有限的。换句话说,有限群包含了有限个元素,并对这些元素进行群运算仍然会得到群内的元素。有限群的大小,也就是它包含的元素个数,称为该群的阶(Order)。
生成元(Generator)是有限群中的一个特殊元素,它可以通过群运算生成群中的所有其他元素。如果一个群的所有元素都可以通过对一个元素进行重复的群运算(例如加法或乘法)来获得,那么这个元素被称为该群的生成元。
离散对数问题的定义: 给定一个有限群G,其生成元为g,以及群G中的一个元素h,离散对数问题要求找到一个整数x,使得 g^x = h 在群G中成立。这里的x就是h关于底数g的离散对数。
在更加直观的数学术语中,如果我们考虑模p的乘法群(其中p是质数),问题可以表述为:给定两个元素g和h,找到一个整数x,使得 g^x ≡ h (mod p)。
离散对数问题的计算困难性: 在有限群中进行乘法运算(