小小数组,不足挂齿

本文介绍了数组的基本概念,包括一维数组的创建、初始化、下标使用,以及二维数组的结构。重点讲解了C99中引入的变长数组,其灵活性和限制。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

数组的概念

        数组是一组相同元素的集合,数组中可以存放一个或多个数据,这些数据类型都是相同的。
例如:int arr[10] 存放10个数据,每个数据的类型都是int 类型的。

一维数组

一维数组的创建格式:

type arr_name[常量值];

type 是数组元素的类型,如:int,double,float…
arr_name 是数组的名字
最后就是要把数组元素的个数写在[ ]内
举个例子:int arr[10],double arr [10],float ch[100]…

一维数组的初始化

       初始化的意思就是给创建好的数组赋上一个初始值。这里就有完全初始化和不完全初始化,完全初始化是值把数组每个元素都赋上一个初始值,如下:

int arr[10]={1,2,3,4,5,6,7,8,9,0};

       不完全初始化顾名思义就是只有部分被赋了值。那没被赋值的元素会被编译器自动赋上0或‘\0’

int arr[10]={1,2,3,4};
char arr2[10]={'a','b','c'};

在编译器两个数组储存的数据如下图:

       字符数组不完全初始化被编译器自动在未被赋值的元素赋值为‘\0’,而整型数组则被赋值为0。

一维数组的使用与下标

       我们要使用数组,就要先了解数组在编译器是如何储存的,对于一位数组,它的元素是连续储存的,每个元素都有自己对应的下标(注意:下标是从0开始)如下图:

在使用数组时,我们要使用下标引用操作符 [ ]在这个里面写上你想要的数字的下标就可以找到相应的值了。
举个栗子:

这样就可以打印出数组的每一个值了。

二维数组

二维数组是把一维数组作为数组元素的,创建格式如下:

type arr_name[常量值][常量值];

       第一个[ ]填写的是行数,第二个[ ]填写的是列数,先来看看二维数组的图,大家就知道了。

       初始化也和一维数组类似,未完全初始化,即那些没赋值的就会被编译器自动赋值为0或’\0’

       但是要注意,二维数组在初始化时,行可以省略不写,但是列是一定要写的,编译器可以根据列来判断行的。
例如:int arr[ ][3] = {1,2,3}; double arr2 [ ][5] ={1,2,3};

接下来简单看一下二维数组的使用,和一维数组类似。

C99中的变长数组

       在C99标准之前,c语言在创建数组的时候,数组大小必须使用常量或者常量表达式,使得数组创建不够灵活,于是C99给了一个变长数组得特性,允许我们使用变量指定数组大小。代码如下:

int main()
{
	int n = 0;
	scanf("%d", &n);
	int arr[n] ;
	return 0;
}

       但是注意了,数组长度只有运行时才能确定,所以变长数组不能初始化,并且数组的大小一旦确定就不能再变化了。所以变长数组不是随时变长的意思,也就是说变长数组只能进行一次长度的确定。而且只有在支持C99的编译器下才能使用变长数组。
       变长数组的好处是在程序员开发的时候,就不用随意分配一个长度,只要再程序运行的时候分配精确的长度即可。

### 部署 Stable Diffusion 的准备工作 为了成功部署 Stable Diffusion,在本地环境中需完成几个关键准备事项。确保安装了 Python 和 Git 工具,因为这些对于获取源码和管理依赖项至关重要。 #### 安装必要的软件包和支持库 建议创建一个新的虚拟环境来隔离项目的依赖关系。这可以通过 Anaconda 或者 venv 实现: ```bash conda create -n sd python=3.9 conda activate sd ``` 或者使用 `venv`: ```bash python -m venv sd-env source sd-env/bin/activate # Unix or macOS sd-env\Scripts\activate # Windows ``` ### 下载预训练模型 Stable Diffusion 要求有预先训练好的模型权重文件以便能够正常工作。可以从官方资源或者其他可信赖的地方获得这些权重文件[^2]。 ### 获取并配置项目代码 接着要做的就是把最新的 Stable Diffusion WebUI 版本拉取下来。在命令行工具里执行如下指令可以实现这一点;这里假设目标路径为桌面下的特定位置[^3]: ```bash git clone https://github.com/AUTOMATIC1111/stable-diffusion-webui.git ~/Desktop/stable-diffusion-webui cd ~/Desktop/stable-diffusion-webui ``` ### 设置 GPU 支持 (如果适用) 当打算利用 NVIDIA 显卡加速推理速度时,则需要确认 PyTorch 及 CUDA 是否已经正确设置好。下面这段简单的测试脚本可以帮助验证这一情况[^4]: ```python import torch print(f"Torch version: {torch.__version__}") if torch.cuda.is_available(): print("CUDA is available!") else: print("No CUDA detected.") ``` 一旦上述步骤都顺利完成之后,就可以按照具体文档中的指导进一步操作,比如调整参数、启动服务端口等等。整个过程中遇到任何疑问都可以查阅相关资料或社区支持寻求帮助。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值