一、项目背景
随着科技的飞速发展,AI 技术在各个领域展现出巨大潜力。实验室作为科研创新的前沿阵地,引入 AI 技术能够提升效率、挖掘数据价值、增强科研能力。
二、AI实验室赋能
数据类
1.分析实验室现有业务流程,挖掘AI技术的应用场景:
对实验室的日常操作、数据管理、实验设计、结果分析等流程进行全面分析。
识别数据量大、重复性高、易出错或需要深度分析的环节。
确定AI在实验设计优化、自动化实验操作、数据预处理、结果预测等方面的应用潜力。
2.建立 AI 辅助实验室工作的初步模型与流程:
设计AI辅助的实验流程图,明确AI介入的节点。
开发初步的AI模型,实验参数优化模型、深度学习的结果预测模型等。
建立数据收集、处理、分析和反馈的闭环流程。
利用 AI 的机器学习算法,根据过往实验数据和理论知识,预测实验结果,优化实验参数,减少实验次数,降低成本和时间。
3.引入成熟AI技术,提高实验室工作效率和科研水平:
选择成熟的AI工具和平台,如自然语言处理(NLP)技术用于文献分析,计算机视觉用于图像识别等。
集成这些技术到实验室信息系统中,实现自动化和高效率的数据处理。
4.培养实验室人员AI应用能力:
开展AI基础知识和应用培训,提高实验室人员的AI素养。
通过实际项目操作,让实验室人员掌握AI工具的使用,促进技能的内化。
5.实验室考核,对实验室人员进行实验室基础知识和工具使用考核:
制定考核标准和流程,确保实验室人员掌握必要的实验技能和AI工具操作。
定期进行考核,根据结果调整培训内容和实验操作流程,确保实验安全性。
6.实验室培训,自动生成培训文档,对实验室人员进行系统操作与实验培训。
7.对实验结果进行分析与优化:
利用AI进行实验数据的深度分析,识别潜在的模式和关联。
根据分析结果调整实验设计,优化实验条件,提高实验结果的准确性和可重复性8.应急预警处理,即将发生异常操作时,AI自动预警,当已经发生异常时AI自动播报应急处理办法。
自动化类
- AI机器人自动进行实验操作,执行实验室的搬运、取样、混合等物理操作。2.AI机器人可对接前处理设备,实现样品的自动进样、稀释、混合等操作。
环境类
- 设备监控与维护:通过 AI 实时监测实验设备运行状态,预测设备故障,及时提醒维护保证实验连续性。
2.实验环境检测:通过 AI 实时监测实验环境状态,温湿度、气压、紫外线等,及实时记录实验室环境数据,利用AI对实验室温湿度进行实时监控和智能调节。
3.实验环境控制,发生异常时,AI自动控制风机、排风等设备;
三、AI智能实验室需求分析
1.高频核心场景
实验准备阶段:
痛点:任务遗忘,物资库存信息不透明。
计划安排:语音提醒当前有哪些日常安排+语音查询库存。
环境适配:针对噪音,温湿度,环境数据优化语音唤醒词识别率至95%。
实验执行阶段:
痛点:多设备操作繁琐,参数易错(如PCR仪温度设置)。
方案指导:语音指令跨设备协同 + AI自动推荐替代方案。
跨设备协同协议:支持Modbus TCP等协议,可协同获取多个设备数据。
实验记录阶段
痛点:手动记录耗时且易遗漏关键数据。
语音随记:语音自动生成结构化记录。