最近想要了解一些关于python迭代器、生成器方面的知识,粗略的写一些自己的理解
容器:容器就如字面意思,可以容纳多个元素的数据结构。而且我们可以通过迭代的方式逐一访问里面的元素。我们熟知的list,tuple,str,队列,集合,字典等等(注意int类型可不是容器)
迭代:迭代是一个操作,即遍历容器元素的操作。(通常使用for进行迭代遍历)
可迭代对象:可以进行迭代操作的可遍历容器都可以成为可迭代对象,首先并不是所有的容器都可以称为可迭代对象,但可以返回一个迭代器的对象都可称之为可迭代对象。其本质是只有实现了__iter__()这个特殊方法 的对象才能称为可迭代对象, __iter__返回迭代器对象本身。
迭代器(迭代器对象):通俗的理解就是实现了__next__这这个特殊方法的对象, 函数本身作用:可以迭代(挨个取元素),且它的返回值是聚合对象的元素.
每一次调用next方法时会做两件事:一是为下一次用next修改状态,二是为当前调用返回结果。
接下来从代码入手
# 现在提供一个列表
list01 = [1,2,3,4]
# 获取它的迭代器,__iter__()返回一个迭代器对象
iterator = list01.__iter__()
# 现在我们通过这个迭代器一次获取元素
while True:
try:
# 通过__next__一次一次的取除元素
item = iterator.__next__()
print(item)
except StopIteration:
break
# 输出
1
2
3
4
上诉代码实现了通过迭代器实现了迭代功能,也就是for循环的功能.
接下来看看更清晰的迭代器对象与可迭代对象的联系
class 可迭代对象():
def __iter__(self):
return 迭代器对象
class 迭代器对象():
def __init__(self, 参数):
self.聚合对象 = 参数
def __next__(self):
if 没有元素了:
raise StopIterator
else:
返回元素
for item in 可迭代对象():
pass
# for 循环等同于下面
iterator = 可迭代对象().__iter__()
while True:
try:
item = iterator.__next__()
except StopIteration:
break
能将以上代码看懂了,基本上你对迭代器是什么有了一定的了解
生成器
在基本理解迭代器之后,继续了解一下生成器.
其实生成器对象很好理解:在同一个类种实现了__iter__, 以及__next__.那么这就是一个生成器
对于生成器而言即能使用for循环迭代,也能实现next()取值不就是同时实现了__iter__以及__next__特殊方法吗
关键字:yield
在 Python 中,使用了 yield 的函数被称为生成器函数(generator)。
跟普通函数不同的是,生成器是一个返回迭代器的函数,只能用于迭代操作,更简单点理解生成器就是一个迭代器。
在调用生成器运行的过程中,每次遇到 yield 时函数会暂停并保存当前所有的运行信息,返回 yield 的值, 并在下一次执行 next() 方法时从当前位置继续运行。
调用一个生成器函数,返回的是一个迭代器对象
代码实例:
import sys
def fibonacci(n): # 生成器函数 - 斐波那契
a, b, counter = 0, 1, 0
while True:
if (counter > n):
return
yield a
a, b = b, a + b
counter += 1
f = fibonacci(10) # f 是一个迭代器,由生成器返回生成
while True:
try:
print (next(f), end=" ")
except StopIteration:
sys.exit()
生成器表达式: 列表生成式的变型也就是生成式,将中括号改为小括号即可.
列表生成式:[i for i in range(100)], 这是一个100元素的列表会一次性添加100个元素在列表中.
生成器表达式:(i for i in range(100)),每调用一次才会产生新的元素,就不会占用内存(例如需要一亿的数据,就不会一下产生一亿个数据元素).