[蓝桥杯 2013 省 B] 带分数
题目描述
100 100 100 可以表示为带分数的形式: 100 = 3 + 69258 714 100 = 3 + \frac{69258}{714} 100=3+71469258。
还可以表示为: 100 = 82 + 3546 197 100 = 82 + \frac{3546}{197} 100=82+1973546。
注意特征:带分数中,数字 1 1 1 ~ 9 9 9 分别出现且只出现一次(不包含 0 0 0)。
类似这样的带分数, 100 100 100 有 11 11 11 种表示法。
输入格式
从标准输入读入一个正整数 N ( N < 1 0 6 ) N(N<10^6) N(N<106)。
输出格式
程序输出数字 N N N 用数码 1 1 1 ~ 9 9 9 不重复不遗漏地组成带分数表示的全部种数。
注意:不要求输出每个表示,只统计有多少表示法!
样例 #1
样例输入 #1
100
样例输出 #1
11
样例 #2
样例输入 #2
105
样例输出 #2
6
提示
原题时限 3 秒, 64M。蓝桥杯 2013 年第四届省赛
解题思路:
- 由于此题要求1~9要都用到,且无重复,和全排列的规则相似。
- 想到全排列,我们应该要想到使用 next_permutation 函数。
- 根据题目要求,可以分为三个整数部分,即整数部分A,分子B,分母C。
- 那么我们应该将一串数字拆分为3部分,所以我们需要用两层循坏去模拟断点位置。
- 第一个断点的最大到达位置是下标为6的位置,要保证第二个断点在第一个断点之后即可。
- 知道了断点位置,再需要解决的就是:将两个断点之间的多个数加起来变成一个十进制数。
- 每次做一次判断,若满足A+B/C的值满足要求,将答案数+1。
代码如下:
#include <bits/stdc++.h>
using namespace std;
int ans=0;
int a[9] ={1,2,3,4,5,6,7,8,9};
//两点的值
int toInt(int l,int r){
int sum=0;
for(int i=l;i<=r;i++)
sum=sum*10+a[i];
return sum;
}
int main()
{
int n;
cin>>n;
do{ //全排列
for(int i=0;i<=6;i++) //模拟第一个断点
for(int j=i+1;j<=7;j++){ //模拟第二个断点
int A=toInt(0,i),B=toInt(i+1,j),C=toInt(j+1,8); //计算出三部分的值
if(B%C==0 && A+B/C ==n) ans++;
}
}while(next_permutation(a,a+9));
cout<<ans;
}
你悟解了吗?