洛谷:P8599 [蓝桥杯 2013 省 B] 带分数

[蓝桥杯 2013 省 B] 带分数

题目描述

100 100 100 可以表示为带分数的形式: 100 = 3 + 69258 714 100 = 3 + \frac{69258}{714} 100=3+71469258

还可以表示为: 100 = 82 + 3546 197 100 = 82 + \frac{3546}{197} 100=82+1973546

注意特征:带分数中,数字 1 1 1 ~ 9 9 9 分别出现且只出现一次(不包含 0 0 0)。

类似这样的带分数, 100 100 100 11 11 11 种表示法。

输入格式

从标准输入读入一个正整数 N ( N < 1 0 6 ) N(N<10^6) N(N<106)

输出格式

程序输出数字 N N N 用数码 1 1 1 ~ 9 9 9 不重复不遗漏地组成带分数表示的全部种数。

注意:不要求输出每个表示,只统计有多少表示法!

样例 #1

样例输入 #1

100

样例输出 #1

11

样例 #2

样例输入 #2

105

样例输出 #2

6

提示

原题时限 3 秒, 64M。蓝桥杯 2013 年第四届省赛


解题思路:

  1. 由于此题要求1~9要都用到,且无重复,和全排列的规则相似。
  2. 想到全排列,我们应该要想到使用 next_permutation 函数。
  3. 根据题目要求,可以分为三个整数部分,即整数部分A,分子B,分母C。
  4. 那么我们应该将一串数字拆分为3部分,所以我们需要用两层循坏去模拟断点位置。
  5. 第一个断点的最大到达位置是下标为6的位置,要保证第二个断点在第一个断点之后即可。
  6. 知道了断点位置,再需要解决的就是:将两个断点之间的多个数加起来变成一个十进制数。
  7. 每次做一次判断,若满足A+B/C的值满足要求,将答案数+1。

代码如下:

#include <bits/stdc++.h>
using namespace std;

int ans=0;
int a[9] ={1,2,3,4,5,6,7,8,9};

//两点的值 
int toInt(int l,int r){
	int sum=0;
	
	for(int i=l;i<=r;i++) 
		sum=sum*10+a[i];
	
	return sum;
}

int main()
{	
	int n;
	cin>>n;
	
	do{	//全排列 
		for(int i=0;i<=6;i++)	//模拟第一个断点
			for(int j=i+1;j<=7;j++){	//模拟第二个断点
					int A=toInt(0,i),B=toInt(i+1,j),C=toInt(j+1,8);	//计算出三部分的值
					if(B%C==0 && A+B/C ==n) ans++;
			}
	}while(next_permutation(a,a+9));

	cout<<ans;
}

你悟解了吗?

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

悟解了

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值