Description
在N×N的棋盘里面放K个国王,使他们互不攻击,共有多少种摆放方案。国王能攻击到它上下左右,以及左上
左下右上右下八个方向上附近的各一个格子,共8个格子。
Input
只有一行,包含两个数N,K ( 1 <=N <=9, 0 <= K <= N * N)
Output
方案数。
Sample Input
3 2
Sample Output
16
Solution
看到 N≤9 , 经典的状压DP。
设 F[i][j][s] 表示当前做到第 i 行、已经放了
j 个国王、且第 i 行国王的放置方式为二进制状态s 的方案数。那么显然有:
F[i][j][s]+=F[i−1][j−num][s′]最后的答案即为: F[n][k][s] (其中 s <script type="math/tex" id="MathJax-Element-658">s</script> 为一行的放置状态)
转移的状态可以通过预处理来先求出,DP也可以改成滚动的,以优化空间。
Code
#include<cstdio>
#include<cstring>
using namespace std;
const int N=(1<<9)+1;
int n,m,k,roll;
long long ans;
int cnt[N],num[N],p[10];
long long f[2][82][N];
bool bz[N][N];
inline void dfs(int x,int last,int s)
{
cnt[++m]=s,num[m]=x;
if(x==k || x==(n+1)>>1) return;
for(int i=last+2;i<=n;i++) dfs(x+1,i,s+p[i-1]);
}
int main()
{
scanf("%d%d",&n,&k);
for(int i=p[0]=1;i<=n;i++) p[i]=p[i-1]<<1;
dfs(0,-1,0);
for(int i=1;i<=m;i++)
for(int j=1;j<=m;j++)
bz[i][j]=bz[j][i]=!(cnt[i]&cnt[j] || cnt[i]<<1&cnt[j] || cnt[i]>>1&cnt[j]);
for(int i=1;i<=m;i++) f[roll][num[i]][i]=1;
for(int i=2;i<=n;i++)
{
roll^=1;
memset(f[roll],0,sizeof(f[roll]));
for(int j=0;j<=k;j++)
for(int l=1;l<=m;l++)
if(num[l]<=j)
for(int c=1;c<=m;c++)
if(bz[l][c] && num[l]+num[c]<=j)
f[roll][j][l]+=f[roll^1][j-num[l]][c];
}
for(int i=1;i<=m;i++) ans+=f[roll][k][i];
printf("%lld",ans);
return 0;
}