[BZOJ1087][SCOI2005]互不侵犯King

18 篇文章 0 订阅
9 篇文章 0 订阅

Description

  在N×N的棋盘里面放K个国王,使他们互不攻击,共有多少种摆放方案。国王能攻击到它上下左右,以及左上
左下右上右下八个方向上附近的各一个格子,共8个格子。

Input

  只有一行,包含两个数N,K ( 1 <=N <=9, 0 <= K <= N * N)

Output

  方案数。

Sample Input

3 2

Sample Output

16

Solution

  • 看到 N9 , 经典的状压DP。

  • F[i][j][s] 表示当前做到第 i 行、已经放了 j 个国王、且第 i 行国王的放置方式为二进制状态 s 的方案数。

  • 那么显然有:

    F[i][j][s]+=F[i1][jnum][s]

  • 最后的答案即为: F[n][k][s] (其中 s <script type="math/tex" id="MathJax-Element-658">s</script> 为一行的放置状态)

  • 转移的状态可以通过预处理来先求出,DP也可以改成滚动的,以优化空间。

Code

#include<cstdio>
#include<cstring>
using namespace std;
const int N=(1<<9)+1;
int n,m,k,roll;
long long ans;
int cnt[N],num[N],p[10];
long long f[2][82][N];
bool bz[N][N];
inline void dfs(int x,int last,int s)
{
    cnt[++m]=s,num[m]=x;
    if(x==k || x==(n+1)>>1) return;
    for(int i=last+2;i<=n;i++) dfs(x+1,i,s+p[i-1]);
}
int main()
{
    scanf("%d%d",&n,&k);
    for(int i=p[0]=1;i<=n;i++) p[i]=p[i-1]<<1;
    dfs(0,-1,0);
    for(int i=1;i<=m;i++)
        for(int j=1;j<=m;j++)
            bz[i][j]=bz[j][i]=!(cnt[i]&cnt[j] || cnt[i]<<1&cnt[j] || cnt[i]>>1&cnt[j]);
    for(int i=1;i<=m;i++) f[roll][num[i]][i]=1;
    for(int i=2;i<=n;i++)
    {
        roll^=1;
        memset(f[roll],0,sizeof(f[roll]));
        for(int j=0;j<=k;j++)
            for(int l=1;l<=m;l++)
                if(num[l]<=j)
                    for(int c=1;c<=m;c++)
                        if(bz[l][c] && num[l]+num[c]<=j)
                            f[roll][j][l]+=f[roll^1][j-num[l]][c];
    }
    for(int i=1;i<=m;i++) ans+=f[roll][k][i];
    printf("%lld",ans);
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值