Description
Input
Output
Sample Input
输入样例1:
3 2 7
5 4 2
输入样例2:
5 3 1
5 4 3 5 5
Sample Output
输出样例1:
999999732
输出样例2:
0
Data Constraint
Solution
显然,乘积最好是负数,这样会更优,那么用一个布尔型变量 Pd 表示当前的负数数量的奇偶性。
因为加减操作的对象的值的绝对值一定是当前最小的,这样才会显得更优(贪心)。
于是我们维护一个堆,取出其绝对值最小的那个,再对 Pd 分类讨论:
若负数数量为奇数,说明乘积为负数;
若负数数量为偶数,说明乘积为正数;
再根据当前值的正负性来判断加减,之后压回堆中即可,时间复杂度 O(K log N) 。
Code
#include<cstdio>
#include<cmath>
#include<queue>
using namespace std;
typedef long long LL;
const int N=2e5+1,mo=1e9+7;
int n,k,x;
int a[N];
bool pd;
struct data
{
int id;
data(int x){id=x;}
friend bool operator <(data x,data y)
{
return abs(a[x.id])>abs(a[y.id]);
}
};
priority_queue<data>q;
inline int read()
{
int X=0,w=1; char ch=0;
while(ch<'0' || ch>'9') {if(ch=='-') w=-1;ch=getchar();}
while(ch>='0' && ch<='9') X=(X<<3)+(X<<1)+ch-'0',ch=getchar();
return X*w;
}
int main()
{
n=read(),k=read(),x=read();
for(int i=1;i<=n;i++)
{
a[i]=read();
if(a[i]<0) pd=!pd;
q.push(data(i));
}
while(k--)
{
int t=q.top().id;
q.pop();
if(a[t]<0)
{
if(pd) a[t]-=x; else a[t]+=x;
if(a[t]>=0) pd=!pd;
}else
{
if(pd) a[t]+=x; else a[t]-=x;
if(a[t]<0) pd=!pd;
}
q.push(t);
}
LL ans=1;
for(int i=1;i<=n;i++) ans=ans*a[i]%mo;
printf("%lld",(ans+mo)%mo);
return 0;
}