Description
小A的楼房外有一大片施工工地,工地上有N栋待建的楼房。每天,这片工地上的房子拆了又建、建了又拆。他经常无聊地看着窗外发呆,数自己能够看到多少栋房子。
为了简化问题,我们考虑这些事件发生在一个二维平面上。小A在平面上(0,0)点的位置,第i栋楼房可以用一条连接(i,0)和(i,Hi)的线段表示,其中Hi为第i栋楼房的高度。如果这栋楼房上任何一个高度大于0的点与(0,0)的连线没有与之前的线段相交,那么这栋楼房就被认为是可见的。
施工队的建造总共进行了M天。初始时,所有楼房都还没有开始建造,它们的高度均为0。在第i天,建筑队将会将横坐标为Xi的房屋的高度变为Yi(高度可以比原来大—修建,也可以比原来小—拆除,甚至可以保持不变—建筑队这天什么事也没做)。请你帮小A数数每天在建筑队完工之后,他能看到多少栋楼房?
Input
第一行两个正整数N,M
接下来M行,每行两个正整数Xi,Yi
Output
M行,第i行一个整数表示第i天过后小A能看到的楼房有多少栋
Sample Input
3 4
2 4
3 6
1 1000000000
1 1
Sample Output
1
1
1
2
数据约定
对于所有的数据1<=Xi<=N,1<=Yi<=10^9
N,M<=100000
Solution
可以看到的高度都是单调上升的,修改一个值只会影响后面的答案。
于是我们可以用线段树维护单调栈(斜率从小到大)。
线段树上维护两个值:最大值 F 和 单调栈大小(即答案)
G 。对于线段树上的某一点(对应着一条线段),当前修改的值为 qy 。有以下两种情况:
①:若 F≤qy ,说明当前线段中的值在单调栈中会被全部弹完,则贡献为 0 ,不用处理。
②:若 F>qy ,则将当前线段分为两段(左子树和右子树),
若左侧的 F 值
≤qy ,则左侧贡献为 0 ,只需递归右子树统计答案即可(同情况①)。否则呢左侧答案不会影响右侧,右侧答案不变并只需递归左子树即可。
过程中不断维护 G 值,询问时输出
G[1] (即整个线段的答案)即可。听说时间复杂度为 O(N log2N) 。
Code
#include<cstdio>
#include<cctype>
using namespace std;
const int N=1e5+5;
int qx;
double qy;
double f[N<<2];
int g[N<<2];
inline int read()
{
int X=0,w=0; char ch=0;
while(!isdigit(ch)) w|=ch=='-',ch=getchar();
while(isdigit(ch)) X=(X<<3)+(X<<1)+(ch^48),ch=getchar();
return w?-X:X;
}
void write(int x)
{
if(x>9) write(x/10);
putchar(x%10+'0');
}
int get(int v,int l,int r,double val)
{
if(l==r) return f[v]>val;
int mid=l+r>>1;
if(f[v<<1]<=val) return get(v<<1|1,mid+1,r,val);
return get(v<<1,l,mid,val)+g[v]-g[v<<1];
}
void change(int v,int l,int r)
{
if(l==r)
{
f[v]=qy;
g[v]=1;
return;
}
int mid=l+r>>1;
if(qx<=mid) change(v<<1,l,mid); else change(v<<1|1,mid+1,r);
f[v]=f[v<<1]>f[v<<1|1]?f[v<<1]:f[v<<1|1];
g[v]=g[v<<1]+get(v<<1|1,mid+1,r,f[v<<1]);
}
int main()
{
int n=read(),m=read();
while(m--)
{
qx=read(),qy=read()*1.0/qx;
change(1,1,n);
write(g[1]),putchar('\n');
}
return 0;
}