Description
菲菲和牛牛在一块n 行m 列的棋盘上下棋,菲菲执黑棋先手,牛牛执白棋后手。
棋局开始时,棋盘上没有任何棋子,两人轮流在格子上落子,直到填满棋盘时结
束。落子的规则是:一个格子可以落子当且仅当这个格子内没有棋子且这个格子的左侧
及上方的所有格子内都有棋子。
棋盘的每个格子上,都写有两个非负整数,从上到下第i 行中从左到右第j 列的格
子上的两个整数记作Ai j 、Bi j 。在游戏结束后,菲菲和牛牛会分别计算自己的得分:菲
菲的得分是所有有黑棋的格子上的Ai j 之和,牛牛的得分是所有有白棋的格子上的Bi j
的和。
菲菲和牛牛都希望,自己的得分减去对方的得分得到的结果最大。现在他们想知
道,在给定的棋盘上,如果双方都采用最优策略且知道对方会采用最优策略,那么,最
终的结果如何。
Input
从文件chess.in 中读入数据。
输入第一行包含两个正整数n;m,保证n;m <=10。
接下来n 行,每行m 个非负整数,按从上到下从左到右的顺序描述每个格子上的
第一个非负整数:其中第i 行中第j 个数表示Ai j。
接下来n 行,每行m 个非负整数,按从上到下从左到右的顺序描述每个格子上的
第二个非负整数:其中第i 行中第j 个数表示Bi j。
Output
输出到文件chess.out 中。
输出一个整数,表示菲菲的得分减去牛牛的得分的结果。
Sample Input
【样例1 输入】
2 3
2 7 3
9 1 2
3 7 2
2 3 1
Sample Output
【样例1 输出】
2
Data Constraint
Hint
棋盘如图所示,双方都采用最优策略时,棋局如下:
• 菲菲下在第1 行第1 列(这是第一步时唯一可以落子的格子);
• 牛牛下在第1 行第2 列;
• 菲菲下在第2 行第1 列;
• 牛牛下在第1 行第3 列;
• 菲菲下在第2 行第2 列;
• 牛牛下在第2 行第3 列(这是这一步时唯一可以落子的格子);
• 填满棋盘,游戏结束,盘面如下。
菲菲的得分为:2 + 9 + 1 = 12 ;牛牛的得分为:7 + 2 + 1 = 10 。
Solution
首先,我们发现下棋的地方形如:
####-
###–
##—
##—
#—-即盘踞在左上角的一整块。
于是考虑记忆化搜索+Hash,状态就是每一行填了几个棋子,用Hash压起来(11进制)。
之后判断此时改哪一方走,若是先手一方走,则:
ans=max(ans,dfs(s)+a[i][j])若是后手方,则:
ans=min(ans,dfs(s)−b[i][j])注意能转移时下一行的棋子数要大于上一行的棋子数。
有用状态只有 C1020 种。
Code
#include<cstdio>
#include<map>
#include<cctype>
using namespace std;
typedef long long LL;
const int N=11,inf=1e9;
int n,m;
int a[N][N],b[N][N];
map<LL,int>mp;
inline int read()
{
int X=0,w=0; char ch=0;
while(!isdigit(ch)) w|=ch=='-',ch=getchar();
while(isdigit(ch)) X=(X<<3)+(X<<1)+(ch^48),ch=getchar();
return w?-X:X;
}
inline int max(int x,int y)
{
return x>y?x:y;
}
inline int min(int x,int y)
{
return x<y?x:y;
}
inline void init()
{
n=read(),m=read();
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++) a[i][j]=read();
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++) b[i][j]=read();
LL all=0;
for(int i=1;i<=n;i++) all=all*N+m;
mp[all]=0;
}
inline LL hash(int *f)
{
LL sum=0;
for(int i=1;i<=n;i++) sum=sum*N+f[i];
return sum;
}
int dfs(LL s)
{
if(mp.count(s)) return mp[s];
int f[N];
f[0]=m;
LL x=s;
int pd=0,ans;
for(int i=n;i;i--) pd+=f[i]=x%N,x/=N;
if(pd&1)
{
ans=inf;
for(int i=1;i<=n;i++)
if(f[i]<f[i-1])
{
f[i]++;
ans=min(ans,dfs(hash(f))-b[i][f[i]]);
f[i]--;
}
}else
{
ans=-inf;
for(int i=1;i<=n;i++)
if(f[i]<f[i-1])
{
f[i]++;
ans=max(ans,dfs(hash(f))+a[i][f[i]]);
f[i]--;
}
}
return mp[s]=ans;
}
int main()
{
init();
printf("%d",dfs(0));
return 0;
}