Description
菲菲和牛牛在一块n 行m 列的棋盘上下棋,菲菲执黑棋先手,牛牛执白棋后手。
棋局开始时,棋盘上没有任何棋子,两人轮流在格子上落子,直到填满棋盘时结
束。落子的规则是:一个格子可以落子当且仅当这个格子内没有棋子且这个格子的左侧
及上方的所有格子内都有棋子。
棋盘的每个格子上,都写有两个非负整数,从上到下第i 行中从左到右第j 列的格
子上的两个整数记作Ai j 、Bi j 。在游戏结束后,菲菲和牛牛会分别计算自己的得分:菲
菲的得分是所有有黑棋的格子上的Ai j 之和,牛牛的得分是所有有白棋的格子上的Bi j
的和。
菲菲和牛牛都希望,自己的得分减去对方的得分得到的结果最大。现在他们想知
道,在给定的棋盘上,如果双方都采用最优策略且知道对方会采用最优策略,那么,最
终的结果如何。
Input
从文件chess.in 中读入数据。
输入第一行包含两个正整数n;m,保证n;m <=10。
接下来n 行,每行m 个非负整数,按从上到下从左到右的顺序描述每个格子上的
第一个非负整数:其中第i 行中第j 个数表示Ai j。
接下来n 行,每行m 个非负整数,按从上到下从左到右的顺序描述每个格子上的
第二个非负整数:其中第i 行中第j 个数表示Bi j。
Output
输出到文件chess.out 中。
输出一个整数,表示菲菲的得分减去牛牛的得分的结果。
Sample Input
2 3
2 7 3
9 1 2
3 7 2
2 3 1
Sample Output
2
数据范围
n,m≤10
题解
这里的n,m都很小,其实可以考虑暴力。
任何一个时刻,被选中的格子与没有被选中的格子的分割线是一条折线。
这样对于任何一种状态,只需要记录每一行有多少个格子被选了,以及先后手就可以了。
这样可以用哈希来记忆化。
code
#include <queue>
#include <cstdio>
#include <iostream>
#include <algorithm>
#include <cstring>
#include <string.h>
#include <cmath>
#include <math.h>
#include <time.h>
#define ll long long
#define N 100003
#define M 13
#define db double
#define P putchar
#define G getchar
#define inf 998244353
#define mo 19260817
#define pi 3.1415926535897932384626433832795
using namespace std;
char ch;
void read(int &n)
{
n=0;
ch=G();
while((ch<'0' || ch>'9') && ch!='-')ch=G();
ll w=1;
if(ch=='-')w=-1,ch=G();
while('0'<=ch && ch<='9')n=(n<<3)+(n<<1)+ch-'0',ch=G();
n*=w;
}
int max(int a,int b){return a>b?a:b;}
int min(int a,int b){return a<b?a:b;}
ll abs(ll x){return x<0?-x:x;}
ll sqr(ll x){return x*x;}
void write(ll x){if(x>9) write(x/10);P(x%10+'0');}
int n,m,a[M][M],b[M][M],p[N],f[mo];
ll h[mo];
int hash(ll x)
{
int y=x%mo;
for(;h[y]!=x && h[y]!=0;y=(y+1)%mo);
return y;
}
int dg(int x,int lst)
{
int y,s;
ll S=0;
for(int i=1;i<=m;i++)
S=S*13+p[i];
S=S*13+x;
s=hash(S);
if(h[s]==S)return f[s];
if(x)
{
s=-inf;
for(int i=1;i<=m;i++)
{
y=p[i]+1;
if(p[i-1]>=y && y<=n)
{
p[i]++;
s=max(s,dg(0,s-a[y][i])+a[y][i]);
p[i]--;
if(s>=lst)return s;
}
}
if(p[m]==n)return 0;
}
else
{
s=inf;
for(int i=1;i<=m;i++)
{
y=p[i]+1;
if(p[i-1]>=y && y<=n)
{
p[i]++;
s=min(s,dg(1,s+b[y][i])-b[y][i]);
p[i]--;
if(s<=lst)return s;
}
}
if(p[m]==n)return 0;
}
S=0;
for(int i=1;i<=m;i++)
S=S*13+p[i];
S=S*13+x;
int t=hash(S);
f[t]=s;h[t]=S;
return s;
}
int main()
{
read(n);read(m);
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++)
read(a[i][j]);
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++)
read(b[i][j]);
p[0]=n+1;printf("%d\n",dg(1,inf));
return 0;
}