JZOJ5637. 【NOI2018模拟4.8】一双木棋

13 篇文章 0 订阅
5 篇文章 0 订阅

Description

菲菲和牛牛在一块n 行m 列的棋盘上下棋,菲菲执黑棋先手,牛牛执白棋后手。
棋局开始时,棋盘上没有任何棋子,两人轮流在格子上落子,直到填满棋盘时结
束。落子的规则是:一个格子可以落子当且仅当这个格子内没有棋子且这个格子的左侧
及上方的所有格子内都有棋子。
棋盘的每个格子上,都写有两个非负整数,从上到下第i 行中从左到右第j 列的格
子上的两个整数记作Ai j 、Bi j 。在游戏结束后,菲菲和牛牛会分别计算自己的得分:菲
菲的得分是所有有黑棋的格子上的Ai j 之和,牛牛的得分是所有有白棋的格子上的Bi j
的和。
菲菲和牛牛都希望,自己的得分减去对方的得分得到的结果最大。现在他们想知
道,在给定的棋盘上,如果双方都采用最优策略且知道对方会采用最优策略,那么,最
终的结果如何。

Input

从文件chess.in 中读入数据。
输入第一行包含两个正整数n;m,保证n;m <=10。
接下来n 行,每行m 个非负整数,按从上到下从左到右的顺序描述每个格子上的
第一个非负整数:其中第i 行中第j 个数表示Ai j。
接下来n 行,每行m 个非负整数,按从上到下从左到右的顺序描述每个格子上的
第二个非负整数:其中第i 行中第j 个数表示Bi j。

Output

输出到文件chess.out 中。
输出一个整数,表示菲菲的得分减去牛牛的得分的结果。

Sample Input

2 3
2 7 3
9 1 2
3 7 2
2 3 1

Sample Output

2

数据范围

n,m≤10

题解

这里的n,m都很小,其实可以考虑暴力。
任何一个时刻,被选中的格子与没有被选中的格子的分割线是一条折线。
这样对于任何一种状态,只需要记录每一行有多少个格子被选了,以及先后手就可以了。
这样可以用哈希来记忆化。

code

#include <queue>
#include <cstdio>
#include <iostream>
#include <algorithm>
#include <cstring>
#include <string.h>
#include <cmath>
#include <math.h>
#include <time.h>
#define ll long long
#define N 100003
#define M 13
#define db double
#define P putchar
#define G getchar
#define inf 998244353
#define mo 19260817
#define pi 3.1415926535897932384626433832795
using namespace std;
char ch;
void read(int &n)
{
    n=0;
    ch=G();
    while((ch<'0' || ch>'9') && ch!='-')ch=G();
    ll w=1;
    if(ch=='-')w=-1,ch=G();
    while('0'<=ch && ch<='9')n=(n<<3)+(n<<1)+ch-'0',ch=G();
    n*=w;
}

int max(int a,int b){return a>b?a:b;}
int min(int a,int b){return a<b?a:b;}
ll abs(ll x){return x<0?-x:x;}
ll sqr(ll x){return x*x;}
void write(ll x){if(x>9) write(x/10);P(x%10+'0');}

int n,m,a[M][M],b[M][M],p[N],f[mo];
ll h[mo];

int hash(ll x)
{
    int y=x%mo;
    for(;h[y]!=x && h[y]!=0;y=(y+1)%mo);
    return y;
}

int dg(int x,int lst)
{
    int y,s;

    ll S=0;
    for(int i=1;i<=m;i++)
        S=S*13+p[i];
    S=S*13+x;
    s=hash(S);
    if(h[s]==S)return f[s];

    if(x)
    {
        s=-inf;
        for(int i=1;i<=m;i++)
        {
            y=p[i]+1;
            if(p[i-1]>=y && y<=n)
            {
                p[i]++;
                s=max(s,dg(0,s-a[y][i])+a[y][i]);
                p[i]--;
                if(s>=lst)return s;
            }
        }
        if(p[m]==n)return 0;
    }
    else
    {
        s=inf;
        for(int i=1;i<=m;i++)
        {
            y=p[i]+1;
            if(p[i-1]>=y && y<=n)
            {
                p[i]++;
                s=min(s,dg(1,s+b[y][i])-b[y][i]);
                p[i]--;
                if(s<=lst)return s;
            }
        }
        if(p[m]==n)return 0;
    }

    S=0;
    for(int i=1;i<=m;i++)
        S=S*13+p[i];
    S=S*13+x;
    int t=hash(S);
    f[t]=s;h[t]=S;
    return s;
}

int main()
{   
    read(n);read(m);
    for(int i=1;i<=n;i++)
        for(int j=1;j<=m;j++)
            read(a[i][j]);
    for(int i=1;i<=n;i++)
        for(int j=1;j<=m;j++)
            read(b[i][j]);

    p[0]=n+1;printf("%d\n",dg(1,inf));

    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值