BZOJ2194: 快速傅立叶之二 FFT_卷积

BZOJ2194: 快速傅立叶之二 FFT_卷积

Code:

#include <cstdio>
#include <algorithm>
#include <cmath>
#include <cstring>
#define setIO(s) freopen(s".in","r",stdin)
#define maxn 200000
#define pi 3.1415926535898
using namespace std;
int len=1,l,r[maxn<<1];
int ans[maxn]; 
char str1[maxn],str2[maxn]; 
struct Cpx{
    double x,y;
    Cpx(double t1=0,double t2=0){x=t1,y=t2;}
}A[maxn<<1],B[maxn<<1],C[maxn<<1],BB[maxn<<1]; 
Cpx operator+(Cpx a,Cpx b){ return Cpx(a.x+b.x,a.y+b.y);}
Cpx operator-(Cpx a,Cpx b){ return Cpx(a.x-b.x,a.y-b.y);}
Cpx operator*(Cpx a,Cpx b){ return Cpx(a.x*b.x-a.y*b.y,a.x*b.y+a.y*b.x);}
void FFT(Cpx *a,int n,int flag){
    for(int i=0;i<n;++i) if(i<r[i]) swap(a[i],a[r[i]]); 
    for(int mid=1;mid<n;mid<<=1){
        Cpx wn(cos(pi/mid),flag*sin(pi/mid)),x,y;
        for(int j=0;j<n;j+=(mid<<1)){
            Cpx w(1,0);
            for(int k=0;k<mid;++k){
                x=a[j+k],y=w*a[j+mid+k];
                a[j+k]=x+y,a[j+mid+k]=x-y;
                w=w*wn; 
            }
        }
    }
}
int main(){
    //setIO("input");
    int n; 
    scanf("%d",&n);
    for(int i=0;i<n;++i) scanf("%lf",&A[i].x),scanf("%lf",&BB[i].x); 
    for(int i=0;i<n;++i) B[i].x=BB[n-i-1].x; 
    while(len<n+n) len<<=1,++l;
    for(int i=0;i<len;++i)
        r[i]=(r[i>>1]>>1)|((i&1)<<(l-1));
    FFT(A,len,1),FFT(B,len,1); 
    for(int i=0;i<=len;++i) C[i]=A[i]*B[i]; 
    FFT(C,len,-1); 
    for(int i=0;i<=len;++i) ans[i]=(int)(C[i].x/len+0.5);  
    for(int i=0;i<n;++i) printf("%d\n",ans[i+n-1]); 
    return 0; 
}

  

posted @ 2019-03-09 00:56 EM-LGH 阅读( ...) 评论( ...) 编辑 收藏
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值