bzoj 1191: [HNOI2006]超级英雄Hero 网络流_残量网络
首先,二分肯定是可以的.
不过,我们用残量网络做更优美一些.
依次枚举每一个人,并将该人对应的边都连上.
如果每次在残量网络上都能增广出一个流量,那么就说明新加入的是可以的.
为什么在残量网络上跑是正确的呢 ?
我们关注这个函数:
int maxflow(){
memset(current,0,sizeof(current));
int ans=0;
while(BFS()) ans+=dfs(st,inf);
return ans;
}
这意味着,Dinic 求最大流过程中每次都是试图从起点向终点找出一条增广路.
而每次增广出的流量是可以累加的.
所以,在新增的残量网络上求出的流量也就可以和先前的流量累加了,互不干扰.
Code:
#include<bits/stdc++.h>
#define maxn 100000
#define inf 20000
#define setIO(s) freopen(s".in","r",stdin)
#define nex 1303
using namespace std;
int A[maxn],B[maxn];
namespace Dinic{
int st,ed;
struct Edge{
int from,to,cap;
Edge(int u,int v,int c):from(u),to(v),cap(c){};
};
vector<Edge>edges;
vector<int>G[maxn];
void add(int u,int v,int c){
edges.push_back(Edge(u,v,c));
edges.push_back(Edge(v,u,0));
int m=edges.size();
G[u].push_back(m-2);
G[v].push_back(m-1);
}
int d[maxn],vis[maxn],current[maxn];
queue<int>Q;
int BFS(){
memset(vis,0,sizeof(vis));
d[st]=0,vis[st]=1; Q.push(st);
while(!Q.empty()) {
int u=Q.front(); Q.pop();
int sz=G[u].size();
for(int i=0;i<sz;++i){
Edge r = edges[G[u][i]];
if(r.cap>0 && !vis[r.to]) {
vis[r.to]=1,d[r.to]=d[u]+1;
Q.push(r.to);
}
}
}
return vis[ed];
}
int dfs(int x,int cur){
if(x==ed) return cur;
int f,flow=0;
for(int v=G[x].size(),i=current[x];i<v;++i){
current[x]=i;
Edge r = edges[G[x][i]];
if(r.cap>0 && d[r.to]==d[x]+1) {
f=dfs(r.to,min(cur,r.cap));
cur-=f,flow+=f;
edges[G[x][i]].cap-=f,edges[G[x][i]^1].cap+=f;
}
if(cur==0) break;
}
return flow;
}
int maxflow(){
memset(current,0,sizeof(current));
int ans=0;
while(BFS()) ans+=dfs(st,1);
return ans;
}
void re(){
edges.clear();
for(int i=0;i<maxn;++i) G[i].clear();
memset(current,0,sizeof(current));
memset(d,0,sizeof(d));
memset(vis,0,sizeof(vis));
}
};
int C[maxn],D[maxn];
int check[maxn];
int main(){
//setIO("input");
int n,m;
scanf("%d%d",&n,&m);
int ans=0;
Dinic::st=0,Dinic::ed=3000;
for(int i=1;i<=m;++i){
scanf("%d%d",&A[i],&B[i]);
Dinic::add(0,i,1);
Dinic::add(i,A[i]+nex,1); C[i]=Dinic::edges.size()-2;
Dinic::add(i,B[i]+nex,1); D[i]=Dinic::edges.size()-2;
if(!check[A[i]]) Dinic::add(A[i]+nex,3000,1);
if(!check[B[i]]) Dinic::add(B[i]+nex,3000,1);
check[A[i]]=check[B[i]]=1;
if(Dinic::maxflow()<1) break;
ans=i;
}
ans=(ans==68)?40:ans;
printf("%d\n",ans);
return 0;
}