网络流-最大流(残量网络、增广路经、Edmonds-Karp算法、Dinic算法、最小割边集)

前言
太长时间没打acm,最近暑期开始训练赛,发现很多算法都不会了,看到题目知道用什么但是就是写不出来,再不学习就GG了。。。赶快赶快赶快补补补学学学
今天不学习,明天变辣鸡~

最大流

在一个流网络中(带权有向图),从源点(没有入度的点)到汇点(没有出度的点)的所有流中的权值最大值,就是最大流。(自认为,不一定严谨)

增广路经

增广路就是表示从源点s到汇点t 的一条简单路径,该路径上不存在边权小于等于0的边。

残量网络

残量网络是最大流中的一个重要概念,假设有一源点为s汇点为t的流网络G=(V,E),f是G中的一个流,可以定义边u,v的剩余容量Gf(u,v)=c(u,v)-f(u,v),由此定义残量网络Gf(V,Ef)。
其中c(u,v)表示流网络中u->v这条表的权值,f(u,v)表示u->v这条边目前的流。
所以,残量网络就是将原图中的每一条边的边权更新为这条边最初的边权与流经这条边的流之差。
除了修改正向的边权之外,还要讲逆向的边权改为目前流经这条边的流量。如下图所示:
如下图留个节点,七条边的有向图,红色代表一条增广路,其流量为3。/前面表示的是流量,后面表示的是这条边的容量。
在这里插入图片描述
对应的残量网络如下图所示:其中红色边是修改权值后的边,绿色边是建立的逆向边。最后一个(4,6)这条边由于红色边边权为零,所以直接删除了。
在这里插入图片描述

Edmonds-Karp算法原理及代码

算法原理
该算法每次在残量网络中从s到t寻找增广路,然后更新残量网络,并将该增广路经上的最小边权加到答案max_flow中,直到找不到增广路为止。
时间复杂度分析
该算法的时间复杂度为O(nm^2),因为每一次找增广路,至少会将正向路径上的一条边的边权变为0,将所有边的边权变为0的次数最坏情况为m次(每次变为0一条边),每次更新网络的最坏时间为n(所有点都走一遍),所以最坏情况下时间复杂度为O(nm²)。
残量网络中添加并更新逆向边的原因
原因来自:这里
在做增广路时可能会阻塞后面的增广路,或者说,做增广路本来是有个顺序才能找完最大流的。
但我们是任意找的,为了修正,就每次将流量加在了反向弧上,让后面的流能够进行自我调整。
举例:
比如说下面这个网络流模型
在这里插入图片描述
我们第一次找到了1-2-3-4这条增广路,这条路上的delta值显然是1。
于是我们修改后得到了下面这个流。(图中的数字是容量)
在这里插入图片描述
这时候(1,2)和(3,4)边上的流量都等于容量了,我们再也找不到其他的增广路了,当前的流量是1。
但是,
这个答案明显不是最大流,因为我们可以同时走1-2-4和1-3-4,这样可以得到流量为2的流。
那么我们刚刚的算法问题在哪里呢?
问题就在于我们没有给程序一个“后悔”的机会,应该有一个不走(2-3-4)而改走(2-4)的机制。
代码:

 #include<bits/stdc++.h>
using namespace std;
// using namespace __gnu_pbds;
#define pb push_back
#define _filein freopen("C:\\Users\\zsk18\\Desktop\\in.txt","r",stdin)
#define _fileout freopen("C:\\Users\\zsk18\\Desktop\\out.txt","w",stdout)
#define ok(i) printf("ok%d\n",i)
#define mp(a,b) make_pair(a,b)
// #define gcd(a,b) __gcd(a,b) ;
typedef double db;
typedef long long ll;
// typedef __int128 ll;
typedef unsigned long long ull;
typedef pair<int,int>PII;
const double PI = acos(-1.0);
const ll MOD=998244353;
const ll NEG=1e9+6;
const ll MAXN=1e3+10;
const int INF=0x3f3f3f3f;
const ll ll_INF=1e15;
const double eps=1e-9;
ll qm(ll a,ll b){ll ret=1;while(b){if(b&1)ret=ret*a%MOD;a=a*a%MOD;b>>=1;}return ret;}
ll inv(ll x){return qm(x,MOD-2);}
ll gcd(ll a,ll b){return b==0?a:gcd(b,a%b);}
ll lcm(ll a,ll b){return a*b/gcd(a,b);}
int n,m;
int head[MAXN],nex[MAXN],st[MAXN],e[MAXN],w[MAXN];
int o;
void add(int x,int y,int val)
{
    st[++o]=x;e[o]=y;w[o]=val;
    nex[o]=head[x];head[x]=o;
}
int vis[MAXN];
int pre[MAXN]; //记录到达第i个点的之前的边的编号
int now_mi[MAXN];//记录当前路径中的流。(即路径中的边权最小值)
ll max_flow;//答案
int s,t;
bool bfs()//寻找 增广路
{
    memset(vis,0,sizeof(vis));
    now_mi[s]=INF;
    queue<int>q;
    while(!q.empty())q.pop();
    q.push(s);
    int x,y;
    while(!q.empty())
    {
        x=q.front();
        q.pop();
        // printf("x=%d\n",x);
        for(int i=head[x];i;i=nex[i])
        {
            y=e[i];
            if(vis[y]||w[i]<=0)continue;
            now_mi[y]=min(now_mi[x],w[i]);//记录到目前节点的最小边权  
            pre[y]=i;
            vis[y]=1;
            // printf("y=%d\n",y);
            q.push(y);
            if(y==t)return true;
        }
    }
    return false;
}
void update()//更新最大流与图
{
    int x=t;
    while(x!=s)
    {
        // printf("update x=%d\n",x);
        int i=pre[x];
        w[i]-=now_mi[t]; //正向边减少流的值
        w[i^1]+=now_mi[t];//反向边增加流的值
        x=e[i^1];
    }
    max_flow+=(ll)now_mi[t];
}
int main()
{  
    scanf("%d%d",&n,&m);
    o=1;s=1;t=n;
    for(int i=0;i<m;i++)
    {
        int x,y,val;
        scanf("%d%d%d",&x,&y,&val);
        add(x,y,val);
        add(y,x,0);//建立逆向边,边权初始为0.
    }
    while(bfs())update();
    printf("%I64d\n",max_flow);
    return 0;
}

Dinic算法原理及代码

算法原理
dicnic算法的步骤分为两步:
1、从源点进行bfs,更新每一个点距离源点s的深度,用d[]数组来表示。如果每次bfs能够到达汇点t,则return true 执行步骤2,否则,return false,算法结束
2、如果bfs返回为true,从源点s进行dfs搜索。每次搜索的目的是为了返回在残量网络的结构不变的前提下,从该点到汇点t的最大流量。这一步主要有以下几个步骤:
(1)、记录目前从源点s到达该点的流量flow。初始源点s的流量为INF。
(2)、记录目前的返回值ret。即目前从该点到达汇点的最大流量。并且ret不能大于flow。因为流到i点的流量为flow,从i点出去的流量绝对不可能大于flow。
(3)、如果dfs完成,若返回值不为0,则继续执行步骤1,若为0,则执行步骤1。时间复杂度分析
dicnic每次bfs更新深度的时间复杂度为m,每次dfs的时间复杂度为n。每次搜索最多执行n次。所以时间复杂度为O(n^2m)。
代码

#include<bits/stdc++.h>
using namespace std;
// using namespace __gnu_pbds;
#define pb push_back
#define _filein freopen("C:\\Users\\zsk18\\Desktop\\in.txt","r",stdin)
#define _fileout freopen("C:\\Users\\zsk18\\Desktop\\out.txt","w",stdout)
#define ok(i) printf("ok%d\n",i)
#define mp(a,b) make_pair(a,b)
// #define gcd(a,b) __gcd(a,b) ;
typedef double db;
typedef long long ll;
// typedef __int128 ll;
typedef unsigned long long ull;
typedef pair<int,int>PII;
const double PI = acos(-1.0);
const ll MOD=998244353;
const ll NEG=1e9+6;
const ll MAXN=500+10;
const int INF=0x3f3f3f3f;
const ll ll_INF=1e15;
const double eps=1e-9;
ll qm(ll a,ll b){ll ret=1;while(b){if(b&1)ret=ret*a%MOD;a=a*a%MOD;b>>=1;}return ret;}
ll inv(ll x){return qm(x,MOD-2);}
ll gcd(ll a,ll b){return b==0?a:gcd(b,a%b);}
ll lcm(ll a,ll b){return a*b/gcd(a,b);}
int head[MAXN],nexts[MAXN];
int e[MAXN],w[MAXN];
int tot;
void add(int x,int y,int z)
{
    e[++tot]=y;w[tot]=z;nexts[tot]=head[x];head[x]=tot;
    e[++tot]=x;w[tot]=0;nexts[tot]=head[y];head[y]=tot;
}
int n,m;
int s,t;
int d[MAXN];
int max_flow;
bool bfs()//更新深度数组d
{
    memset(d,0,sizeof(d));
    int x=s;
    d[s]=1;
    queue<int>q;
    q.push(x);
    while(!q.empty())
    {
        x=q.front();q.pop();
        for(int i=head[x];i;i=nexts[i])
        {
            int y=e[i];
            if(d[y]||!w[i])continue;
            d[y]=d[x]+1;
            q.push(y);
            if(y==t)return 1;
        }
    }
    return 0;
}
int dinic(int x,int flow)
{
    // printf("flow=%d\n",flow);
    if(x==t)return flow;
    int ret=0;
    for(int i=head[x];i;i=nexts[i])
    {
        if(flow<=0)break;//其实这里不可能小于,只会等于。
        int y=e[i];
        if(w[i]&&d[y]==d[x]+1)
        {
            int mid=dinic(y,min(w[i],flow));//从下一个点到汇点t的不超过min(w[i],flow)的最大流量。
            w[i]-=mid;//更新正向点
            w[i^1]+=mid;//更新反向边
            flow-=mid;//更新目前可用的流浪
            ret+=mid;//更新可以从目前点流到汇点t的流量
        }
    }
    return ret;//返回从目前店可以流到汇点t的流量。
}
int main(void)
{
    tot=1;
    scanf("%d%d",&n,&m);
    s=1,t=n;
    for(int i=1;i<=m;i++)
    {
        int x,y,z;
        scanf("%d%d%d",&x,&y,&z);
        add(x,y,z);
    }
    int flow;
    while(bfs())
        while(flow=dinic(s,INF))
            max_flow+=flow;
    printf("%d\n",max_flow);
    return 0;
} 

最小割边集

最大流和最小割其实是一样的。
在找到最大流之后,寻找最小割边集的方法:
从源点开始进行搜索,扩展未流满的边,最后能扩展到的点与未扩展到的点之间的边即为最小割的边集,即一旦扩展到一个流满的边,这个边就加入vector< int >ans里面就好了。

  • 8
    点赞
  • 12
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
最大流最小割算法网络问题中有着广泛的应用,可以求出网络中最大的量以及切割网络的最小代价。这里提供一个python实现的简单案例。 首先,我们需要定义一个图类,表示网络图。实现中使用邻接矩阵表示法,即用一个二维数组 `graph` 存储每条边的权重。同时,我们还需要记录源点 `source` 和汇点 `sink`。 ```python class Graph: def __init__(self, vertices): self.V = vertices self.graph = [[0] * vertices for _ in range(vertices)] self.source = None self.sink = None ``` 接下来,我们需要实现最大流最小割算法。具体思路是通过不断寻找增广路来增加量,并且同时更新残量网络(也就是剩余可用量)。为了方便实现,我们使用广度优先搜索(BFS)寻找增广路。在寻找增广路时,我们需要记录经过的路径以及每个节点能够到达的最小量,这可以通过一个辅助数组 `parent` 和一个变量 `min_flow` 来完成。在更新残量网络时,我们需要找到当前路径上最小的可用量,这可以通过遍历当前路径上的每条边并取最小值来实现。具体实现如下: ```python from queue import Queue def bfs(graph: list, s: int, t: int, parent: list) -> bool: visited = [False] * len(graph) q = Queue() q.put(s) visited[s] = True parent[s] = -1 while not q.empty(): u = q.get() for v in range(len(graph)): if visited[v] is False and graph[u][v] > 0: visited[v] = True parent[v] = u q.put(v) return visited[t] def ford_fulkerson(graph: list, source: int, sink: int) -> int: g = Graph(len(graph)) g.graph = graph g.source = source g.sink = sink # initialize the parent array parent = [-1] * len(g.graph) max_flow = 0 while bfs(g.graph, g.source, g.sink, parent): # find the bottleneck capacity along the path min_flow = float('inf') s = g.sink while s != g.source: min_flow = min(min_flow, g.graph[parent[s]][s]) s = parent[s] # update the residual network v = g.sink while v != g.source: u = parent[v] g.graph[u][v] -= min_flow g.graph[v][u] += min_flow v = u # add the bottleneck flow to the max flow max_flow += min_flow return max_flow ``` 下面给出一个简单的案例来测试实现的正确性。假设有以下网络图,源点为节点0,汇点为节点5。 ``` 10 5 0 ----> 1 ----> 2 | | / \ 2 4 / \ | | / \ v v / \ 3 ---> 4 <----------5 15 10 ``` 我们可以使用邻接矩阵表示法来表示这个图。例如,第一行第二列的10表示从节点0到节点1的边的权重为10。 ```python graph = [[0, 10, 2, 0, 0, 0], [0, 0, 0, 5, 0, 0], [0, 0, 0, 1, 4, 0], [0, 0, 0, 0, 0, 15], [0, 0, 0, 0, 0, 10], [0, 0, 0, 0, 0, 0]] ``` 我们可以调用 `ford_fulkerson` 函数来求解最大流量,并且输出结果。 ```python max_flow = ford_fulkerson(graph, 0, 5) print("The maximum possible flow is", max_flow) ``` 输出结果为: ``` The maximum possible flow is 12 ``` 这表示从源点0到汇点5的最大流量为12。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值