声明:工作以来主要从事TTS工作,工程算法都有涉及,平时看些文章做些笔记。文章中难免存在错误的地方,还望大家海涵。平时搜集一些资料,方便查阅学习:TTS 论文列表 低调奋进 TTS 开源数据 低调奋进。如转载,请标明出处。欢迎关注微信公众号:低调奋进
目录
1 研究背景
歌唱合成SVS(singing voice synthesis)是根据歌词和乐谱信息合成歌唱。相比于TTS(text to speech)使机器“开口说话”,歌唱合成则是让机器唱歌,因此更具有娱乐性。互联网的时代,人机交互更加频繁和智能,歌唱合成则添加了人机交互的趣味性,因此受到工业界和学术界的关注。相比TTS,歌唱合成需要更多的输入信息,比如乐谱中的音高信息,节拍信息等等。但是歌唱合成的训练语料十分昂贵,为获得较高品质的歌唱干声和乐谱信息,研究者需要付出上百万的开销,这也阻碍大量研究人员的脚步。本文针对2020年歌唱合成的发展状况,总结在是否拥有大量训练数据前提下采用的不同方案,以供同行参考。
各家demo的链接:
https://bytesings.github.io/paper1.html
https://xiaoicesing.github.io/
HiFiSinger: Towards High-Fidelity Neural Singing Voice Synthesis - Speech Research
DurIAN-SC: Duration Informed Attention Network based Singing Voice Conversion System | [“DurIAN_SC”]
DeepSinger: Singing Voice Synthesis with Data Mined From the Web - Speech Research
2 研究情况
其实歌声合成(singing voice synthesis)的文章不算太多,本打算通读以后再做个总结,但思来想去还不如先总结之后,以后再慢慢修改,也算“敏捷”总结。我找的文章都是2020年的文章,这样可以看出去年歌唱合成的发展动态。我们知道,歌唱合成之所以没有像TTS这样受到强烈关注的原因之一就是训练语料的匮乏。相较普通音频的训练语料,歌唱合成的训练语料要贵好几倍,因此很少有企业和研究所能够承担此种开销。歌唱合成训练语料相比普通语料的成本较高的原因:1)需要专业歌手在专业的录音棚录制高音质的干声;2)歌声的标注需要更复杂的信息,标注成本较高。是否拥有充足的训练数据导致不同的研究方向和策略,因此我根据训练数据是否充足进行以下分类:
2.1 数据充足
2.1.1 系统架构设计
(a)ByteSing: A Chinese Singing Voice Synthesis System Using Duration Allocated Encoder-Decoder Acoustic Models and WaveRNN Vocoders
(b)XiaoiceSing: A High-Quality and Integrated Singing Voice Synthesis System
2.1.2 高采样率数据
(a)HiFiSinger: Towards High-Fidelity Neural Singing Voice Synthesis