声明:平时看些文章做些笔记分享出来,文章中难免存在错误的地方,还望大家海涵。平时搜集一些资料,方便查阅学习:http://yqli.tech/page/speech.html。如转载,请标明出处。欢迎关注微信公众号:低调奋进
Dyn-ASR: Compact, Multilingual Speech Recognition via Spoken Language and Accent Identification本文为 Intel Corporation, Chandler, Arizona, USA在2021.08.04更新的文章,主要研究如何在边缘设备上进行多语言ASR的部署,该文章感觉更偏向工程设计。具体的文章链接https://arxiv.org/pdf/2108.02034.pdf
1 研究背景
在边缘设备上部署多语言ASR是一件具有挑战的任务,因为边缘设备提供的计算资源和存储资源受到极大的限制。现在的终端设备提供的ASR服务更多采用云服务的方式,这种类型的服务的latency相对较大一些。本文设计一种在边缘设备上部署多语言ASR的架构:Dyn-ASR,该架构不仅性能表现优异,而且资源开销较小。
2 详细设计
本文设计的架构如图一所示,先对wav文件进行预处理,然后通过language和accent模块进行语言和方言类型的识别,然后通过<language id, accent id>来选择相对应的识别模型进行加载和推理。其中<language id, accent id>对应的模型是在预训练模型上进行的微调,这样可以提高准确率。
3 实验
本实验在english,mandarin和tamil数据进行试验,首先看一下wer,table1本文的方案wer最低。Table2和figure2展示的计算资源和存储资源的开销,本文的方法具备较高的优势。
4 总结
本文针对边缘设备低资源的特点,设计了一种部署在边缘设备的多语言ASR架构,该架构不仅资源开销低,而且性能表现优异。