语音识别(ASR)论文优选:Dyn-ASR: Compact, Multilingual Speech Recognition via Spoken Language and Accent Ident

声明:平时看些文章做些笔记分享出来,文章中难免存在错误的地方,还望大家海涵。平时搜集一些资料,方便查阅学习:http://yqli.tech/page/speech.html。如转载,请标明出处。欢迎关注微信公众号:低调奋进

Dyn-ASR: Compact, Multilingual Speech Recognition via Spoken Language and Accent Identification本文为 Intel Corporation, Chandler, Arizona, USA在2021.08.04更新的文章,主要研究如何在边缘设备上进行多语言ASR的部署,该文章感觉更偏向工程设计。具体的文章链接https://arxiv.org/pdf/2108.02034.pdf


1 研究背景

在边缘设备上部署多语言ASR是一件具有挑战的任务,因为边缘设备提供的计算资源和存储资源受到极大的限制。现在的终端设备提供的ASR服务更多采用云服务的方式,这种类型的服务的latency相对较大一些。本文设计一种在边缘设备上部署多语言ASR的架构:Dyn-ASR,该架构不仅性能表现优异,而且资源开销较小。

2 详细设计

本文设计的架构如图一所示,先对wav文件进行预处理,然后通过language和accent模块进行语言和方言类型的识别,然后通过<language id, accent id>来选择相对应的识别模型进行加载和推理。其中<language id, accent id>对应的模型是在预训练模型上进行的微调,这样可以提高准确率。

3 实验

本实验在english,mandarin和tamil数据进行试验,首先看一下wer,table1本文的方案wer最低。Table2和figure2展示的计算资源和存储资源的开销,本文的方法具备较高的优势。

4 总结

本文针对边缘设备低资源的特点,设计了一种部署在边缘设备的多语言ASR架构,该架构不仅资源开销低,而且性能表现优异。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

我叫永强

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值