声明:平时看些文章做些笔记分享出来,文章中难免存在错误的地方,还望大家海涵。搜集一些资料,方便查阅学习:http://yqli.tech/page/speech.html。语音合成领域论文列表请访问http://yqli.tech/page/tts_paper.html,语音识别领域论文统计请访问http://yqli.tech/page/asr_paper.html。如何查找语音资料请参考文章https://mp.weixin.qq.com/s/eJcpsfs3OuhrccJ7_BvKOg)。如有转载,请注明出处。欢迎关注微信公众号:低调奋进。
Automatic Speech Recognition Datasets in Cantonese Language: A Survey and a New Dataset
本文为香港科技大学在2022.01.07更新的文章,主要对粤语的开源数据集进行总结并开源新的数据集MDCC,具体的链接
https://arxiv.org/pdf/2201.02419.pdf
注:本文主要开源粤语识别数据集,较为简单。
1 背景
伴随着基于神经网络的语音识别的性能不断提升、开源数据的不断增多,语音社区逐渐扩大。但语音识别在低资源语言的语料依然匮乏,因此本文设计和提供了粤语语料MDCC。
2 详细设计
本文先统计目前开源的粤语语料的详细数据,具体如table1所示。因此本文设计了数据集Multi-Domain Cantonese Corpus (MDCC) 。该数据包括以下场景: philosophy, politics, education, culture, lifestyle and family。该数据集制作流程:1)获取粤语语音,使用VAD进行切句子;2)使用Google Cloud Speech-to-Text API进行转写;3)人工进行校对。其中在人工校验过程中对文本的格式进行处理,比如table2展示的unified writing和important words。table3展示几条归一化的文本事例。图1和table4是数据集MDCC划分具体参数。图2和图3展示时长分布。table5展示语料中top的词的情况。图4展示每个domain句子数量。图5展示词频分布情况。







3 实验
本文和common voice zh-HK数据集进行对比试验。table6是两个数据集的数据划分情况。table 7是训练的模型Fairseq S2T Transformer长度CER情况。试验结果表明数据集MDCC增强模型鲁棒性。


4 总结
本文主要总结了粤语的识别语料饼干提出了数据集Multi-Domain Cantonese Corpus (MDCC) 。
本文介绍了香港科技大学发布的粤语语音识别数据集MDCC,旨在填补低资源语言语料库的空白。MDCC涵盖多个场景,经过语音转写和人工校对,提升了模型的鲁棒性。
1126

被折叠的 条评论
为什么被折叠?



