Greiner 经典力学(多体系统和哈密顿力学) 第六章 学习笔记

Greiner 经典力学 第六章 学习笔记

6.1 Linear Momentum of the Many-Body System

一个多体系统有N个质点组成,第 v v v 个质点的受力为:
F v + ∑ f v λ = p ˙ v \mathbf F_v+\sum \mathbf f_{v \lambda} = \dot{\mathbf p}_v Fv+fvλ=p˙v
对所有的质点求和:
∑ p ˙ v = ∑ F v + ∑ ∑ f v λ P ˙ = F \sum \dot{\mathbf p}_v = \sum \mathbf F_v + \sum \sum \mathbf f_{v \lambda} \\ \dot {\mathbf P} = \mathbf F p˙v=Fv+∑∑fvλP˙=F
上面式子中的双重求和为0, F = ∑ F v \mathbf F = \sum \mathbf F_v F=Fv ,为所有外力的矢量和, P = ∑ p ˙ v \mathbf P = \sum \dot{\mathbf p}_v P=p˙v,为各个质点的动量之和。

6.2 Angular Momentum of the Many-Body System

v v v 个质点对原点的角动量为:
l v = r v × p v \mathbf l_v= \mathbf r_v \times \mathbf p_v lv=rv×pv
整个系统对原点的角动量为:
L = ∑ l v = ∑ r v × p v \mathbf L = \sum \mathbf l_v = \sum \mathbf r_v \times \mathbf p_v L=lv=rv×pv
v v v 个质点受到的外力矩为:
d v = r v × F v \mathbf d_v = \mathbf r_v \times \mathbf F_v dv=rv×Fv
整个系统受到的外力矩为:
D = ∑ d v = ∑ ( r v × F v ) \mathbf D = \sum \mathbf d_v = \sum (\mathbf r_v \times \mathbf F_v) D=dv=(rv×Fv)
我们对角动量求导可以得到:
L ˙ = ∑ d d t ( r v × p v ) = ∑ ( r ˙ v × p v + r v × p ˙ v ) = ∑ r v × p ˙ v = ∑ r v × ( F v + ∑ f v λ ) = ∑ r v × F v + ∑ ∑ r v × f v λ = ∑ r v × F v = D \dot {\mathbf L}= \sum \frac{d}{dt} \mathbf (r_v \times\mathbf p_v) = \sum (\dot {\mathbf r}_v \times \mathbf p_v+\mathbf r_v \times \dot {\mathbf p}_v)= \sum \mathbf r_v \times \dot {\mathbf p}_v \\ = \sum \mathbf r_v \times (\mathbf F_v+\sum \mathbf f_{v \lambda}) \\ = \sum \mathbf r_v \times \mathbf F_v + \sum \sum \mathbf r_v \times \mathbf f_{v \lambda} \\ = \sum \mathbf r_v \times \mathbf F_v = \mathbf D L˙=dtd(rv×pv)=(r˙v×pv+rv×p˙v)=rv×p˙v=rv×(Fv+fvλ)=rv×Fv+∑∑rv×fvλ=rv×Fv=D

上面式子利用了 r v × f v λ + r λ × f λ v = ( r v − r λ ) × f v λ = 0 \mathbf r_v\times \mathbf f_{v \lambda} + \mathbf r_\lambda \times \mathbf f_{\lambda v} = (\mathbf r_v - \mathbf r_\lambda)\times \mathbf f_{v\lambda} = 0 rv×fvλ+rλ×fλv=(rvrλ)×fvλ=0

所以上面式子中的双重求和结果为0,就得到了角动量的导数等于所有外力的力矩之和。

6.4 Transformation to Center-of-Mass Coordinates

这一小节的内容非常重要。

首先是一些定义,包括质心 R \mathbf R R、重量 M M M,质心速度 V \mathbf V V
M = ∑ m v R = ∑ m v r v ∑ m v = ∑ m v r v M V = R ˙ = ∑ m v r v ∑ m v = ∑ m v v v M P = ∑ m v v v = M V \begin{align} M &= \sum m_v\\ \mathbf R &= \frac{\sum m_v \mathbf r_v}{\sum m_v} = \frac{\sum m_v \mathbf r_v}{M} \\ \mathbf V &= \dot {\mathbf R} = \frac{\sum m_v \mathbf r_v}{\sum m_v} = \frac{\sum m_v \mathbf v_v}{M} \\ \mathbf P &= \sum m_v \mathbf v_v = M \mathbf V \end{align} MRVP=mv=mvmvrv=Mmvrv=R˙=mvmvrv=Mmvvv=mvvv=MV
然后我们将质点的坐标拆分为质心坐标+相对质心的坐标。
r v = R + r v ′ r ˙ v = R ˙ + r ′ ˙ v v v = V + v v ′ \mathbf r_v = \mathbf R + \mathbf r'_v \\ \dot {\mathbf r}_v = \dot{\mathbf R} + \dot{\mathbf r'}_v\\ \mathbf v_v = \mathbf V+ \mathbf v'_v rv=R+rvr˙v=R˙+r˙vvv=V+vv
带入质心坐标系,有:
M R = ∑ m v r v = ∑ m v ( R + r v ′ ) = ∑ m v R + ∑ m v r v ′ = M R + ∑ m v r v ′ M \mathbf R = \sum m_v \mathbf r_v = \sum m_v (\mathbf R + \mathbf r'_v) \\ = \sum m_v \mathbf R + \sum m_v \mathbf r'_v \\ = M \mathbf R + \sum m_v \mathbf r'_v MR=mvrv=mv(R+rv)=mvR+mvrv=MR+mvrv
书上在推导上面式子时有个印刷错误,据说是德文翻译成英文版时的问题。希望再版时能把这些错误给改正了。

由上面的式子可以看出: ∑ m v r v ′ = 0 \sum m_v \mathbf r'_v = 0 mvrv=0,还有 ∑ m v r ′ ˙ v = ∑ m v v ′ = 0 \sum m_v \dot {\mathbf r'}_v= \sum m_v \mathbf v'= 0 mvr˙v=mvv=0。也就是在质心坐标系下动量为 0。

有了动量还可以推导角动量的表达式:
L = ∑ m v ( r v × v v ) = ∑ m v ( R + r v ′ ) × ( V + v v ′ ) = ∑ m v R × V + R × ∑ m v v v ′ + ∑ m v r v ′ × V + ∑ m v r v ′ × v v ′ = M R × V + ∑ m v r v ′ × v v ′ = L s + ∑ l v ′ \begin{align} \mathbf L &= \sum m_v (\mathbf r_v \times \mathbf v_v) \\ &= \sum m_v (\mathbf R + \mathbf r'_v) \times (\mathbf V + \mathbf v'_v) \\ &= \sum m_v \mathbf R \times \mathbf V + \mathbf R \times \sum m_v \mathbf v'_v + \sum m_v \mathbf r'_v \times \mathbf V + \sum m_v \mathbf r'_v \times \mathbf v'_v \\ &= M \mathbf R \times \mathbf V + \sum m_v \mathbf r'_v \times \mathbf v'_v \\ &= \mathbf L_s +\sum \mathbf l'_v \end{align} L=mv(rv×vv)=mv(R+rv)×(V+vv)=mvR×V+R×mvvv+mvrv×V+mvrv×vv=MR×V+mvrv×vv=Ls+lv
上面的式子值得多说两句,一个系统的总的角动量等于 质心的角动量 和 质心坐标系下各个质点的角动量的和。
D = L ˙ = d d t ∑ m v ( r v × v v ) = ∑ ( r v × m v r ¨ v ) = ∑ r v × ( F v + ∑ f v λ ) = ∑ r v × F v = ∑ ( R + r v ′ ) × F v = ∑ R × F v + ∑ r v ′ × F v = R × F + ∑ r v ′ × F v = D s + ∑ d v ′ \begin{align} \mathbf D = \dot L &=\frac{d}{dt} \sum m_v(\mathbf r_v \times \mathbf v_v)\\ &= \sum (\mathbf r_v \times m_v\ddot{\mathbf r}_v) \\ &=\sum \mathbf r_v \times (\mathbf F_v+\sum \mathbf f_{v \lambda}) \\ &=\sum \mathbf r_v \times \mathbf F_v \\ &= \sum (\mathbf R + \mathbf r'_v)\times \mathbf F_v \\ &=\sum \mathbf R \times \mathbf F_v + \sum \mathbf r'_v \times \mathbf F_v \\ &=\mathbf R \times \mathbf F + \sum \mathbf r'_v \times \mathbf F_v \\ &=\mathbf D_s+\sum \mathbf d'_v \end{align} D=L˙=dtdmv(rv×vv)=(rv×mvr¨v)=rv×(Fv+fvλ)=rv×Fv=(R+rv)×Fv=R×Fv+rv×Fv=R×F+rv×Fv=Ds+dv
上面的推导可以看出力矩也可以从形式上写为两部分的和。那么这两部分和角动量的两部分是否有对应关系还需要进一步的推导证明。
L ˙ s = d d t ( M R × V ) = R × P ˙ = R × F = D s \begin{align} \dot {\mathbf L}_s &= \frac{d}{dt} (M \mathbf R \times \mathbf V) \\ &= \mathbf R \times \dot {\mathbf P} \\ &= \mathbf R \times \mathbf F = \mathbf D_s \end{align} L˙s=dtd(MR×V)=R×P˙=R×F=Ds
所以合外力对质心的力矩等于质心的角动量的变化率。
∑ l ˙ v ′ = ∑ d v ′ \sum \dot{\mathbf l}'_v = \sum \mathbf d'_v l˙v=dv
但是分项没有对应关系,因为 l ˙ v ′ \dot{\mathbf l}'_v l˙v 除了受外力的影响还要受内力的影响。极端情况下,外力为零,但是内力也可以使得 l ˙ v ′ ≠ 0 \dot{\mathbf l}'_v \neq 0 l˙v=0

6.5 Transformation of the Kinetic Energy

T = 1 2 ∑ m v v v 2 = 1 2 ∑ m v ( V + v v ′ ) 2 = 1 2 M V 2 + 1 2 ∑ m v ( v v ′ ) 2 + V 2 ∑ m v v v ′ = 1 2 M V 2 + 1 2 ∑ m v ( v v ′ ) 2 \begin{align} T &= \frac{1}{2} \sum m_v \mathbf{v}_v^2 \\ &= \frac{1}{2} \sum m_v (\mathbf V + \mathbf{v}'_v)^2\\ & = \frac{1}{2} M \mathbf V^2 + \frac{1}{2} \sum m_v (\mathbf v'_v)^2 + \frac{V}{2}\sum m_v \mathbf v'_v \\ & = \frac{1}{2} M \mathbf V^2 + \frac{1}{2} \sum m_v (\mathbf v'_v)^2 \end{align} T=21mvvv2=21mv(V+vv)2=21MV2+21mv(vv)2+2Vmvvv=21MV2+21mv(vv)2

所以动能可以分解为质心的动能,和各部分相对质心运动的动能。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值