Training a deep autoencoder or a classifier on MNIST digits_Rbm训练(Matlab)

这篇博客记录了使用Matlab进行RBM训练以识别MNIST手写数字的过程。作者在阅读程序时遇到了一些困难,希望通过分享笔记与读者共同探讨学习,促进技术进步。
摘要由CSDN通过智能技术生成


Training a deep autoencoder or a classifier on MNIST digits_Rbm训练(Matlab)



     这是第一次阅读matlab版的RBM程序所做的笔记,其中有好多没有理解的地方,希望能跟各位博友一起学习、一起研究、一起讨论,共同进步微笑

一、Rbm阅读材料
    http://en.wikipedia.org/wiki/Restricted_Boltzmann_machine
    http://deeplearning.net/tutorial/rbm.html
二、Rbm训练的基本原理
三、Rbm代码分析
   
% Version 1.000 
%
% Code provided by Geoff Hinton and Ruslan Salakhutdinov 
%
% Permission is granted for anyone to copy, use, modify, or distribute this
% program and accompanying programs and documents for any purpose, provided
% this copyright notice is retained and prominently displayed, along with
% a note saying that the original programs are available from our
% web page.
% The programs and documents are distributed without any warranty, express or
% implied.  As the programs were written for research purposes only, they have
% not been tested to the degree that would be advisable in any important
% application.  All use 
  • 2
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
Autoencoder-based data augmentation can have a significant influence on deep learning-based wireless communication systems. By generating additional training data through data augmentation, the performance of deep learning models can be greatly improved. This is particularly important in wireless communication systems, where the availability of large amounts of labeled data is often limited. Autoencoder-based data augmentation techniques can be used to generate synthetic data that is similar to the real-world data. This can help to address the problem of overfitting, where the deep learning model becomes too specialized to the training data and performs poorly on new, unseen data. By increasing the diversity of the training data, the deep learning model is better able to generalize to new data and improve its performance. Furthermore, autoencoder-based data augmentation can also be used to improve the robustness of deep learning models to channel variations and noise. By generating synthetic data that simulates different channel conditions and noise levels, the deep learning model can be trained to be more resilient to these factors. This can result in improved performance in real-world wireless communication scenarios, where channel conditions and noise levels can vary widely. In conclusion, autoencoder-based data augmentation can have a significant influence on deep learning-based wireless communication systems by improving the performance and robustness of deep learning models.
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值