上一节Python操作Excel表格使用的是openpyxl包,这个包虽然能处理简单日常工作中Excel表格数据处理,但面对机器学习庞大的数据,还是显得力不从心,所以openpyxl大多数应用于简单的Excel表格操作,以及机器学习分析后表格的样式优化,但针对于数据的操作运算,我们还是要借助与pandas。
1.安装Pandas包
对于直接下载python安装程序的用户来说,pandas包并没有自带安装,所以需要使用Pandas的程序员,需要借助于pip install pandas进行安装。(数据表格与源代码在文章最后下载)
import pandas as pd
df = pd.read_excel('shuju.xlsx')
df['s_date'] = pd.to_datetime(df['s_date'])
df = df.set_index('s_date')
#每月某用户总评论量
x = []
y = []
data = df[df['s_nameId'] == '择城终老'].resample('M')['s_comment'].max().reset_index(drop=False)
for index, row in data.iterrows():
if pd.isnull(row['s_comment']):
y.append(0)
else:
y.append(row['s_count'])
x.append(str(row['s_date'].year)[-2:] + str(row['s_date'].month))
print(x)
print(y)
而直接使用anaconda安装python的程序员,可以直接使用pandas包,因为anaconda自带安装了pandas,无需再次安装,推荐使用这种方式进行安装。
2.如何使用Pandas包
对于Pandas来说,首先,我们肯定要先获取Excel文件,才能进行后续的操作以及计算,所以我们需要掌握如何获取到Excel表格中的所有数据,代码如下:
import pandas as pd
df = pd.read_excel('shuju.xlsx')
这里我们先引入了pandas包,并且重新给他起了一个简单的名字pd,然后直接使用pd.read_excel(‘文件路径’),把Excel数据读取进来,我们通过print(df)打印来看看表格中的数据,如图:
可以看到表格中有3151行数据,这样就能直接输出打印,也就是说,通过上面的调用,就已经获取了所有的数据,并不需要像openpyxl