EigenFaces人脸识别---OpenCV-Python开发指南(43)

本文介绍了EigenFaces人脸识别原理,通过PCA降维处理高维人脸数据。讲解了OpenCV中创建和训练EigenFace识别器的步骤,并提供实战代码示例。尽管与LBPH人脸识别有相似之处,EigenFaces要求训练和测试图像大小一致,识别结果的confidence阈值需注意。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

EigenFaces原理

EigenFaces通常也被称为特征脸,它使用主成分分析(Principal Component Analysis,PAC)方法将高维的人脸数据处理为低维数据后,在进行数据分析和处理,获取识别结果。

EigenFaces简单来说就是对原始数据使用PCA方法进行降维,获取其中的主成分信息,从而实现人脸识别的方法。

EigenFaces识别步骤

在OpenCV中,它给我们提供函数cv2.face.EigenFaceRecognizer_create()生成特征脸识别器,然后应用cv2.face_EigenFaceRecognizer.train()函数完成训练,最后用cv2.face_FaceRecognizer.predict()导入要识别的人脸图像,获取预测结果。

是不是与上一篇博文人脸识别的步骤一摸一样呢?不过,虽然最后一个方法相同,但前面两个方法还是不同的,我们也同样介绍一下函数的定义与使用。

cv2.face.EigenFaceRecognizer_create(num_components=None, threshold
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

李元静

您的鼓励就是我创作的动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值