离散序列的一致性度量方法:动态时间规整(DTW)

动态时间规整(DTW)是一种衡量不等长时间序列相似性的方法,常用于语音识别、动态手势识别等。本文介绍了DTW的基本思想,包括通过动态规划构建矩阵并寻找最优路径,以及归整路径距离的计算方法,并提供了一个具体例子和Matlab代码实现。
摘要由CSDN通过智能技术生成

动态时间规整:Dynamic Time Warping(DTW),是一种衡量两个离散时间序列相似度的方法,主要特点是在序列长度不一或x轴无法完全对齐的情况下,用满足一定条件的的时间规整函数描述两者之间的时间对应关系。DTW算法在各种模式匹配任务中被广泛使用,如语音识别、动态手势识别和信息检索等中。

一、算法简述

在数字信号处理领域中,时间序列是数据的一种常见表示形式。对于时间序列处理来说,对于许多的信号处理任务,如图像匹配、视频跟踪和姿态识别等,通常需要度量两个离散序列的相似性。而这一步骤说难不难,说易也不易,这往往需要考虑信号采样、噪声干扰等实际问题。

在很多情况下,单纯的相似性度量方法无法很好度量两个序列的一致性,如在语音识别中经常出现两段时间序列的长度不相等的情况(或下图中的情况),此时从直观上都能观察到,直接使用欧几里得距离、相关系数等方法进行度量并不靠谱,此时点对点运算变得无意义。

这里写图片描述

DTW的主要思路如下:

1.假定两个待匹配的离散数据分别为A={A(1),A(2),…,A(m)}和B={B(1),B(2),…,B(m)},其中下标为1的元素为序列的起点,下标为m/n的元素为序列终点。

2.为了对齐A,B两个序列,这里采用了“动态规划”的方法,首先构造一个m*n的矩阵,用于存放两序列点对点之间的距离(一般可使用欧氏距离),距离越小表明两点之间的相似度越高。

3.该部分是DTW算法的核心,这里把矩阵看成一个网格,算法的目的可总结为寻找一条通过此矩阵网格的最优路径,该路径通过的网格点即为两个离散序列经过对齐后的点对。

4.找到最优路径后,DTW算法定义了一个归整路径距离(Warp Path Distance),通过使用所有相似点之间距离的和,来衡量两个时间序列之间的相似性。

二、归整路径距离计算方法:

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值