leetcode笔记:Minimum Path Sum

本文探讨了LeetCode中的Minimum Path Sum问题,通过动态规划方法寻找网格中从左上角到右下角的最小路径和。利用一个二维矩阵存储每个位置的最小路径和,状态转移公式为当前值加上左侧或上方的最小值。这是一道经典的动态规划题目,理解动态规划的三要素对于解决此类问题至关重要。
摘要由CSDN通过智能技术生成

一. 题目描述

Given a m n grid filled with non-negative numbers, find a path from top left to bottom right which minimizes the sum of all numbers along its path.

Note: You can only move either down or right at any point in time

二. 题目分析

题目的大意是,给定一个m*n 的网格,每个格子里有一个非负整数,找到一条从左上角到右下角的路径,使其经过的格子数值之和最小,每一步只能向右向下走。

动态规划,可以使用一个m*n的矩阵来存储到达每个位置的最小路径和。每个位置的最小路径和应该等于自身的值加上左侧或者上面两者中的极小值。这样很容易写出状态转移公式:

f[i][j] = min(f[i-1][j], f[i][j-1]) + grid[i][j]

三. 示例代码

#include <iostream>
#include <vector>

using namespace std;

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值