特征工程-定义+意义+安装scikit-learn+数据的特征抽取(字典、文本)

本文介绍了数据科学中的特征工程,包括使用scikit-learn库进行字典数据和文本数据的特征抽取。重点讲解了DictVectorizer进行字典特征值化,CountVectorizer用于文本计数,以及TfidfVectorizer实现TF-IDF文本表示。这些方法在机器学习模型中用于提高预测准确性。

目录

数据中对特征的处理

特征工程定义

特征工程意义

安装scikit-learn

数据的特征抽取

字典特征抽取

DictVectorizer语法

文本特征抽取

CountVectorizer语法

TfidfVectorizer语法


数据中对特征的处理

pandas:一个数据读取非常方便以及基础的处理格式的工具

sklearn:对于特征的处理提供了强大的接口 

特征工程定义

特征工程是将原始数据转换为更好地代表预测模型的潜在问题的特征的过程,从而提高了对未知数据的预测准确性

特征工程意义

直接影响预测结果

安装scikit-learn

数据的特征抽取

特征抽取对文本等数据进行特征值化

特征值化是为了计算机更好的去理解数据

字典特征抽取

作用:对字典数据进行特征值化

DictVectorizer语法

from sklearn.feature_extraction import DictVectorizer

def dictvec():
    """字典数据抽取"""
    # 实例化
    dict = DictVectorizer()

    # 调用fit_transform
    data = dict.fit_transform([{'city':'北京','temperature':100},
                                {'city':'上海','temperature':60},
                                {'city':'深圳','temperature':30}])
    
    print(data)
    return None

if _name_="main":
    dictvec()

返回结果:

from sklearn.feature_extraction import DictVectorizer

def dictvec():
    """字典数据抽取"""
    # 实例化
    dict = DictVectorizer(sparse=False)

    # 调用fit_transform
    data = dict.fit_transform([{'city':'北京','temperature':100},
                                {'city':'上海','temperature':60},
                                {'city':'深圳','temperature':30}])
    
    print(data)
    return None

if _name_="main":
    dictvec()

 返回结果:

one-hot编码:

 字典数据抽取:把字典中一些类别数据,分别进行转换成特征

数组形式,有类别的这些特征,先要转换成字典数据

文本特征抽取

 作用:对文本数据进行特征值化

CountVectorizer语法

 

from sklearn.feature_extraction import DictVectorizer
from sklearn.feature_extraction.text import CountVectorizer

def dictvec():
    """字典数据抽取"""
    # 实例化
    dict = DictVectorizer(sparse=False)

    # 调用fit_transform
    data = dict.fit_transform([{'city':'北京','temperature':100},
                                {'city':'上海','temperature':60},
                                {'city':'深圳','temperature':30}])
    
    print(data)
    return None

def countvec():
    """对文本进行特征值化"""
    # 实例化
    cv = CountVectorizer()

    # 调用fit_transform
    data = cv.fit_transform(["life is short,i like python","life is too long,i dislike python"])

    print(cv.get_feature_names())
    
    print(data.toarray())
    return None

if _name_="main":
    countvec()

 

from sklearn.feature_extraction.text import CountVectorizer


def countvec():
    """对文本进行特征值化"""
    # 实例化
    cv = CountVectorizer()

    # 调用fit_transform
    data = cv.fit_transform(["人生 苦短,我 喜欢 python","人生漫长,不用 python"])

    print(cv.get_feature_names())
    
    print(data.toarray())
    return None

if _name_="main":
    countvec()

 一句话便需要先进行分词,空格隔开

from sklearn.feature_extraction.text import CountVectorizer

import jieba

def cutword():
    con1 = jieba.cut("今天很残酷,明天更残酷,后天很美好,但绝对大部分是死在明天晚上,所以每个人不要放弃今天。")
    con2 =jieba.cut("我们看到的从很远星系来的光是在几百万年之前发出的,这样当我们看到宇由时,我们是在看它的过去。")
    con3 =jieba.cut("如果只用一种方式了解某样事物,你就不会真正了解它。了解事物真正含义的秘密取决于如何将其与我们所了")

    # 转换成列表
    content1 = list(con1)
    content2 = list(con2)
    content3 = list(con3)

    # 把列表转换成字符串
    c1 = ' '.join(content1)
    c2 = ' '.join(content2)
    c3 = ' '.join(content3)

    return c1,c2,c3

def hanzivec():
    """中文特征值化"""
    
    c1,c2,c3 = cutword()

    cv = CountVectorizer()

    # 调用fit_transform
    data = cv.fit_transform([c1,c2,c3])

    print(cv.get_feature_names())
    
    print(data.toarray())
    return None

if _name_="main":
    hanzivec()

TF-IDF的主要思想是:如果某个词或短语在一篇文章中出现的概率高,并且在其他文章中很少出现,则认为此词或者短语具有很好的类别区分能力,适合用来分类。

TF-IDF作用:用以评估一字词对于一个文件集或一个语料库中的其中一份文件的重要程度

TfidfVectorizer语法

 

from sklearn.feature_extraction.text import CountVectorizer, TfidfVectorizer

import jieba

def cutword():
    con1 = jieba.cut("今天很残酷,明天更残酷,后天很美好,但绝对大部分是死在明天晚上,所以每个人不要放弃今天。")
    con2 =jieba.cut("我们看到的从很远星系来的光是在几百万年之前发出的,这样当我们看到宇由时,我们是在看它的过去。")
    con3 =jieba.cut("如果只用一种方式了解某样事物,你就不会真正了解它。了解事物真正含义的秘密取决于如何将其与我们所了")

    # 转换成列表
    content1 = list(con1)
    content2 = list(con2)
    content3 = list(con3)

    # 把列表转换成字符串
    c1 = ' '.join(content1)
    c2 = ' '.join(content2)
    c3 = ' '.join(content3)

    return c1,c2,c3

def tfidfvec():
    """中文特征值化"""
    
    c1,c2,c3 = cutword()

    tf = TfidfVectorizer()

    # 调用fit_transform
    data = tf.fit_transform([c1,c2,c3])

    print(tf.get_feature_names())
    
    print(data.toarray())
    return None

if _name_="main":
    tfidfvec()

 为什么需要TfidfVectorizer?

分类机器学习算法的重要依据

### Scikit-learn 中梯度下降方法 在 scikit-learn 库中,虽然没有直接名为“梯度下降”的算法,但许多模型内部确实使用了梯度下降作为优化手段之一。例如,在 `SGDRegressor` 和 `SGDClassifier` 这两个类里实现了基于小批量随机梯度下降 (Mini-batch Stochastic Gradient Descent, SGD) 的线性回归和分类功能[^1]。 对于想要应用梯度下降来进行模型训练的情况,可以选择上述提到的支持该机制的学习器,并通过设置相应的参数来控制其行为。比如可以通过调节 learning_rate 来影响每次迭代中的步长大小;还可以指定 penalty 类型(L1/L2/elasticnet),从而引入正则项约束以防止过拟合现象的发生。 ```python from sklearn.linear_model import SGDRegressor sgd_reg = SGDRegressor(max_iter=1000, tol=1e-3, random_state=42) sgd_reg.fit(X_train, y_train) ``` 这段代码展示了如何创建并配置一个支持梯度下降更新规则的线性回归估计器实例 sgd_reg 。其中 max_iter 控制最大迭代次数,tol 表示当损失函数变化小于给定阈值时停止训练过程,random_state 则用于保证结果重现性[^5]。 ### 如何进行超参数搜索 为了找到最佳组合下的超参设定,scikit-learn 提供了两种主要方式——GridSearchCV 和 RandomizedSearchCV ,它们都属于交叉验证框架的一部分[^4]: #### Grid Search with Cross Validation (`GridSearchCV`) 这种方法会遍历所有候选参数列表之间的笛卡尔积空间,即穷举法寻找最优解。尽管计算成本较高,但在参数维度较低的情况下非常有效。 ```python from sklearn.model_selection import GridSearchCV param_grid = { 'alpha': [0.0001, 0.001, 0.01], 'penalty': ['l2', 'l1'] } grid_search = GridSearchCV(SGDRegressor(), param_grid, cv=5, scoring='neg_mean_squared_error', n_jobs=-1) grid_search.fit(X_train, y_train) print(f'Best parameters found: {grid_search.best_params_}') best_estimator = grid_search.best_estimator_ ``` 这里定义了一个包含 alpha 及 penalty 不同取值范围在内的字典对象 param_grid ,并通过传递给 GridSearchCV 构造函数完成整个搜索流程。最终输出表现最好的一组参数及其对应的模型实例 best_estimator。 #### Randomized Search with Cross Validation (`RandomizedSearchCV`) 不同于前者逐一遍历的方式,此方法允许用户指定分布而非具体数值区间,然后从中抽取有限数量的样本点进行评估。这种方式特别适合于高维参数空间探索场景下快速定位潜在优秀区域。 ```python from scipy.stats import uniform as sp_randFloat from sklearn.model_selection import RandomizedSearchCV param_distribs = {'alpha': sp_randFloat(loc=0, scale=0.1), 'penalty': ['l2', 'l1']} rand_search = RandomizedSearchCV( estimator=SGDRegressor(), param_distributions=param_distribs, n_iter=100, cv=5, scoring='neg_mean_squared_error', verbose=2, random_state=42, n_jobs=-1 ) rand_search.fit(X_train, y_train) print(f'Best parameters found by randomized search are:\n{rand_search.best_params_}') final_best_model = rand_search.best_estimator_ ``` 在这段脚本中,采用了连续均匀分布生成器 sp_randFloat 来表示 alpha 值域内的可能性密度函数形式,而 penalty 维持离散选项不变。随后调用 fit 方法启动自动寻优程序直至收敛结束,最后同样获取到了最理想的配置方案 final_best_model。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值