TF-IDF探秘

本文探讨了TF-IDF的概念,其中TF代表词频,IDF是逆文档频率。介绍了IDF的计算公式,并讨论了当词未出现时的处理方式。文章还调研了相关工具,如结巴分词用于关键词提取,以及nlpc-wordrank进行Term重要性和主干分析。此外,提到了TfidfVectorizer在实际文本处理中的应用。
摘要由CSDN通过智能技术生成

1.TF:词频,IDF:逆文本概率。存在的文本个数越多,值越小。 用户量改成pv?
2.IDF计算:IDF(x)=log(N/N(x)),N为文本总数,N(x)为包含x的文本数 未出现的话,N(x)=0 ----》IDF(x)=log(N/(N(x)+1)

工具调研:
1)结巴分词 ok。同时可以进行关键词提取
2)nlpc-wordrank:Term重要性和主干分析。
Term重要性对组成query的term进行打分,并作归一化处理,所有term重要性之和为1。 与idf不同的是,单term重要性利用了许多统计信息和query迭代算法,使同一query内部term间相对权值更具有可比性。单term重要性可用于检索系统的基础归并权值计算、query中心词提取、query省略等领域。

同一文本测试:
在这里插入图片描述

{
    "ret": 0, 
    "msg": "", 
    "content": {
        "nlpc_trunks_pb": [
            {
                "weight": 0.0760907, 
                "buffer": "易", 
                "rank": 1, 
                "reduce_type": 7, 
                "reserve": 0, 
                "term_level": 0, 
                "type": 0
            }, 
            {
                "weight": 0.0730944, 
                "buffer": "烊", 
                "rank": 1, 
                "reduce_type": 7, 
                "reserve": 0, 
                "term_level": 0, 
                "type": 0
            }, 
            {
                "weight": 0.128541, 
                "buffer": "千玺", 
                "rank": 2, 
                "reduce_type": 7, 
                "reserve": 0, 
                "term_level": 0, 
                "type": 0
            }, 
            {
                "weight": 0.0192157, 
                "buffer": "的", 
                "rank": 0, 
                "reduce_type": 2, 
                "reserve": 0, 
                "term_level": 0, 
                "type": 0
            }, 
            {
                "weight": 0.105014, 
                "buffer": "粉丝", 
                "rank": 1, 
                "reduce_type": 7, 
                "reserve": 0, 
                "term_level": 0, 
                "type": 0
            }, 
            {
                "weight": 0.0380482, 
                "buffer": "参加", 
                "rank": 1, 
                "reduce_type": 7, 
                "reserve": 0, 
                "term_level": 0, 
                "type": 0
            }, 
            {
                "weight": 0.017015, 
                "buffer": "了", 
                "rank": 0, 
                "reduce_type": 2, 
                "reserve": 0, 
                "term_level": 0, 
                "type": 0
            }, 
            {
                "weight": 0.107997, 
                "buffer": "生日", 
                "rank": 1, 
                "reduce_type": 7, 
                "reserve": 0, 
                "term_level": 0, 
                "type": 0
            }, 
            {
                "weight": 0.019413, 
             
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值