CodeForces 664A Complicated GCD

Time Limit: 1000MS Memory Limit: 262144KB 64bit IO Format: %I64d & %I64u

 Status

Description

Greatest common divisor GCD(a, b) of two positive integers a and b is equal to the biggest integer d such that both integers a and b are divisible by d. There are many efficient algorithms to find greatest common divisor GCD(a, b), for example, Euclid algorithm.

Formally, find the biggest integer d, such that all integers a, a + 1, a + 2, ..., b are divisible by d. To make the problem even more complicated we allow a and b to be up to googol, 10100 — such number do not fit even in 64-bit integer type!

Input

The only line of the input contains two integers a and b (1 ≤ a ≤ b ≤ 10100).

Output

Output one integer — greatest common divisor of all integers from a to b inclusive.

Sample Input

Input
1 2
Output
1
Input
61803398874989484820458683436563811772030917980576 61803398874989484820458683436563811772030917980576
Output
61803398874989484820458683436563811772030917980576

Source

 Status

Problem descriptions:
System Crawler 2016-04-17  0
Initialization.




如果a==b,答案就是a或者b

如果a!=b,答案只能是1


#include <stdio.h>
#include <string.h>
const int MAXN=105;
char a[MAXN],b[MAXN];
int main()
{
        while(scanf("%s%s",a,b)>0)
        {
                if(!strcmp(a,b))
                        printf("%s\n",a);
                else
                        printf("1\n");
        }
        return 0;
}



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值