用机器学习来提升你的用户增长:第六步,预测销量

点击上方“AI公园”,关注公众号,选择加“星标“或“置顶”


作者:Barış KaramanFollow

编译:ronghuaiyang

正文共:6867 字 16 图

预计阅读时间:20 分钟

导读

预测销量有很多的用处,这是一个时间序列的预测问题,我们可以使用传统的时序回归的方法,也可以使用机器学习,深度学习的方法,一起来了解一下。

前文回顾:

用机器学习来提升你的用户增长:第一步,了解你的目标

用机器学习来提升你的用户增长:第二步,客户分群

用机器学习来提升你的用户增长:第三步,预测客户的终生价值

用机器学习来提升你的用户增长:第四步,客户流失预测

用机器学习来提升你的用户增长:第五步,预测客户的下一个购买日

第六部分: 预测销量

在本节之前,几乎所有的预测模型都是基于客户层面的(例如客户流失预测、下一个购买日等)。但有时候,我们从全局的角度看一看,也是有用的。通过考虑我们在客户方面的所做的努力,我们该如何影响销售?

时间序列预测是机器学习的主要组成部分之一。文献中有许多方法可以实现这一目的,如自回归综合移动平均(ARIMA)、季节自回归综合移动平均(SARIMA)、向量自回归(VAR)等。

在这篇文章中,我们将关注长短时记忆(LSTM)方法,如果你想使用深度学习,这是一种非常流行的方法。我们将在我们的项目中使用Keras来实现LSTM。

最后,了解未来的销售情况对我们的业务有什么帮助

首先,它是一个基准。如果我们的战略没有改变的话,我们可以把它作为我们要达到的业务水平来使用。此外,我们可以在这个基准上计算新行为导致的增量值。

其次,它可以用于规划。我们可以通过预测来计划我们的需求和供应行为。这有助于找到更多的投资方向。

最后但并非最不重要的是,它是规划预算和目标的优秀指南。

现在我们开始写代码并建立我们的第一个深度学习模型。

我们模型的实现有3个步骤:

  • 数据整理

  • 数据变换,使其稳定并定义监督信号

  • 建立LSTM模型并评估

数据整理

在本例中,我们使用来自Kaggle竞赛中的数据集。它包含每个商店和物品的每日销售额。

像往常一样,我们导入所需的库,并从CSV导入我们的数据:

 
  1. from datetime import datetime, timedelta,date

  2. import pandas as pd

  3. %matplotlib inline

  4. import matplotlib.pyplot as plt

  5. import numpy as np

  6. from __future__ import division

  7.  
  8. import warnings

  9. warnings.filterwarnings("ignore")

  10.  
  11. import plotly.plotly as py

  12. import plotly.offline as pyoff

  13. import plotly.graph_objs as go

  14.  
  15. #import Keras

  16. import keras

  17. from keras.layers import Dense

  18. from keras.models import Sequential

  19. from keras.optimizers import Adam 

  20. from keras.callbacks import EarlyStopping

  21. from keras.utils import np_utils

  22. from keras.layers import LSTM

  23. from sklearn.model_selection import KFold, cross_val_score, train_test_split

  24.  
  25. #initiate plotly

  26. pyoff.init_notebook_mode()

  27.  
  28. #read the data in csv

  29. df_sales = pd.read_csv('sales_data.csv')

  30.  
  31. #convert date field from string to datetime

  32. df_sales['date'] = pd.to_datetime(df_sales['date'])

  33.  
  34. #show first 10 rows

  35. df_sales.head(10)

我们的数据看起来如下:

 

我们的任务是预测每月的总销售额。我们需要按月汇总数据并汇总sales列。

 
  1. #represent month in date field as its first day

  2. df_sales['date'] = df_sales['date'].dt.year.astype('str') + '-' + df_sales['date'].dt.month.astype('str') + '-01'

  3. df_sales['date'] = pd.to_datetime(df_sales['date'])

  4.  
  5. #groupby date and sum the sales

  6. df_sales = df_sales.groupby('date').sales.sum().reset_index()

在应用了上面的代码后,df_sales现在显示的是我们需要的总销售额:

数据变换

为了使我们的预测模型更容易和更准确,我们将进行以下变换:

  • 如果数据不平稳,我们将把数据转换成平稳的

  • 转换成有监督的适合LSTM模型的时间序列特征集合

  • 按比例缩放数据

首先,我们如何检查数据是否是稳定的?我们把它画出来看看:

 
  1. #plot monthly sales

  2. plot_data = [

  3.     go.Scatter(

  4.         x=df_sales['date'],

  5.         y=df_sales['sales'],

  6.     )

  7. ]

  8.  
  9. plot_layout = go.Layout(

  10.         title='Montly Sales'

  11.     )

  12. fig = go.Figure(data=plot_data, layout=plot_layout)

  13. pyoff.iplot(fig)

每月的销售额图:

月销售额——不稳定

很明显,它不是稳定的,在过去几个月里有上升的趋势。一种方法是获得当前月的销售与前一个月的差异,并在此基础上建立模型:

 
  1. #create a new dataframe to model the difference

  2. df_diff = df_sales.copy()

  3.  
  4. #add previous sales to the next row

  5. df_diff['prev_sales'] = df_diff['sales'].shift(1)

  6.  
  7. #drop the null values and calculate the difference

  8. df_diff = df_diff.dropna()

  9. df_diff['diff'] = (df_diff['sales'] - df_diff['prev_sales'])

  10. df_diff.head(10)

现在,我们有了所需要的dataframe来建模这个差别:

我们把这个差别画出来,然后看看是否稳定:

 
  1. #plot sales diff

  2. plot_data = [

  3.     go.Scatter(

  4.         x=df_diff['date'],

  5.         y=df_diff['diff'],

  6.     )

  7. ]plot_layout = go.Layout(

  8.         title='Montly Sales Diff'

  9.     )

  10. fig = go.Figure(data=plot_data, layout=plot_layout)

  11. pyoff.iplot(fig)

月销售额的差别 —— 稳定

完美!现在我们可以开始构建我们的特征集了。我们需要使用以前的月销售数据来预测下一个月。每个模型的回溯区间可能不同。对于这个例子,我们的值是12。

所以我们需要做的是创建从lag_1到lag_12的列,并使用**shift()**方法赋值:

 
  1. #create dataframe for transformation from time series to supervised

  2. df_supervised = df_diff.drop(['prev_sales'],axis=1)

  3.  
  4. #adding lags

  5. for inc in range(1,13):

  6.     field_name = 'lag_' + str(inc)

  7.     df_supervised[field_name] = df_supervised['diff'].shift(inc)

  8.  
  9. #drop null values

  10. df_supervised = df_supervised.dropna().reset_index(drop=True)

看看我们这个叫做df_supervised的新dataframe:

我们现在有了特征集。让我们更好奇地问这个问题:

我们的特征对于预测有多少用

Adjusted R-squared就是答案。它告诉我们,我们的特征在多大程度上解释了标签的变化(在我们的示例中,差从lag_1到lag_12)。

让我们来看一个例子:

 
  1. # Import statsmodels.formula.api

  2. import statsmodels.formula.api as smf

  3.  
  4. # Define the regression formula

  5. model = smf.ols(formula='diff ~ lag_1', data=df_supervised)

  6.  
  7. # Fit the regression

  8. model_fit = model.fit()

  9.  
  10. # Extract the adjusted r-squared

  11. regression_adj_rsq = model_fit.rsquared_adj

  12. print(regression_adj_rsq)

上面的代码做了什么事情?

我们拟合了一个线性回归模型(OLS - Ordinary Least Squares),并计算了Adjusted R-squared。对于上面的例子,我们使用lag_1列来查看它在多大程度上解释了列diff中的变化。该代码的输出为:

lag_1解释了3%的变化。让我们看看其他的:

再增加四个特征,得分从3%提高到44%。

如果我们使用整个特征集,得分是多少:

结果非常好,分数是98%。现在,我们可以在对数据缩放之后自信地构建我们的模型。但是在缩放之前还有一个步骤。我们应该把数据分成训练集和测试集。作为测试集,我们选择了最近6个月的销售额。

 
  1. #import MinMaxScaler and create a new dataframe for LSTM model

  2. from sklearn.preprocessing import MinMaxScaler

  3. df_model = df_supervised.drop(['sales','date'],axis=1)

  4.  
  5. #split train and test set

  6. train_set, test_set = df_model[0:-6].values, df_model[-6:].values

我们使用MinMaxScaler,它对每个特征缩放到-1和1之间:

 
  1. #apply Min Max Scaler

  2. scaler = MinMaxScaler(feature_range=(-1, 1))

  3. scaler = scaler.fit(train_set)

  4.  
  5. # reshape training set

  6. train_set = train_set.reshape(train_set.shape[0], train_set.shape[1])

  7. train_set_scaled = scaler.transform(train_set)

  8.  
  9. # reshape test set

  10. test_set = test_set.reshape(test_set.shape[0], test_set.shape[1])

  11. test_set_scaled = scaler.transform(test_set)

构建LSTM模型

一切都准备好了,来建立我们的第一个深度学习模型。让我们从缩放后的数据集创建特征和标签:

 
  1. X_train, y_train = train_set_scaled[:, 1:], train_set_scaled[:, 0:1]

  2. X_train = X_train.reshape(X_train.shape[0], 1, X_train.shape[1])

  3.  
  4. X_test, y_test = test_set_scaled[:, 1:], test_set_scaled[:, 0:1]

  5. X_test = X_test.reshape(X_test.shape[0], 1, X_test.shape[1])

我们拟合一下LSTM模型:

 
  1. model = Sequential()

  2. model.add(LSTM(4, batch_input_shape=(1, X_train.shape[1], X_train.shape[2]), stateful=True))

  3. model.add(Dense(1))

  4. model.compile(loss='mean_squared_error', optimizer='adam')

  5. model.fit(X_train, y_train, nb_epoch=100, batch_size=1, verbose=1, shuffle=False)

上面的代码块打印出了模型是如何更新的,在每个epoch中误差是如何减少的:

我们来做一下预测,看看结果怎么样:

 
  1. y_pred = model.predict(X_test,batch_size=1)

  2. #for multistep prediction, you need to replace X_test values with the predictions coming from t-1

结果看起来很相似,但它并不能告诉我们多少信息,因为这些是差异的缩放后的数据。我们怎样才能看到实际的销售预测呢?

首先,我们需要做缩放的逆变换:

 
  1. #reshape y_pred

  2. y_pred = y_pred.reshape(y_pred.shape[0], 1, y_pred.shape[1])

  3.  
  4. #rebuild test set for inverse transform

  5. pred_test_set = []

  6. for index in range(0,len(y_pred)):

  7.     print np.concatenate([y_pred[index],X_test[index]],axis=1)

  8.     pred_test_set.append(np.concatenate([y_pred[index],X_test[index]],axis=1))

  9.     

  10. #reshape pred_test_set

  11. pred_test_set = np.array(pred_test_set)

  12. pred_test_set = pred_test_set.reshape(pred_test_set.shape[0], pred_test_set.shape[2])

  13.  
  14. #inverse transform

  15. pred_test_set_inverted = scaler.inverse_transform(pred_test_set)

其次,我们需要构建具有日期和预测的dataframe。转换后的预测显示出了这种差异。我们计算预测的销售数字:

 
  1. #create dataframe that shows the predicted sales

  2. result_list = []

  3. sales_dates = list(df_sales[-7:].date)

  4. act_sales = list(df_sales[-7:].sales)

  5. for index in range(0,len(pred_test_set_inverted)):

  6.     result_dict = {}

  7.     result_dict['pred_value'] = int(pred_test_set_inverted[index][0] + act_sales[index])

  8.     result_dict['date'] = sales_dates[index+1]

  9.     result_list.append(result_dict)

  10. df_result = pd.DataFrame(result_list)

  11.  
  12. #for multistep prediction, replace act_sales with the predicted sales

输出:

太棒了!我们预测了未来六个月的销售数字。让我们在图中检查一下,看看我们的模型有多好:

 
  1. #merge with actual sales dataframe

  2. df_sales_pred = pd.merge(df_sales,df_result,on='date',how='left')

  3.  
  4. #plot actual and predicted

  5. plot_data = [

  6.     go.Scatter(

  7.         x=df_sales_pred['date'],

  8.         y=df_sales_pred['sales'],

  9.         name='actual'

  10.     ),

  11.         go.Scatter(

  12.         x=df_sales_pred['date'],

  13.         y=df_sales_pred['pred_value'],

  14.         name='predicted'

  15.     )

  16.     

  17. ]

  18.  
  19. plot_layout = go.Layout(

  20.         title='Sales Prediction'

  21.     )

  22. fig = go.Figure(data=plot_data, layout=plot_layout)

  23. pyoff.iplot(fig)

实际值 vs 预测值:

对于一个简单的模型来说看起来很不错。

我们可以对这个模型做的一个改进是增加假期、休息时间和其他季节性影响。它们可以作为一个新特征简单地添加进去。

通过使用这个模型,我们有了基本的销售预测。但是我们如何预测促销对销售的影响呢?我们将在第7部分对此进行研究。

—END—

英文原文:https://towardsdatascience.com/predicting-sales-611cb5a252de

  • 1
    点赞
  • 10
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值