MBA-数学题概念和公式

最大公约数gcd:Greatest Common Divisor,
  • 指能同时整除两个或多个整数的最大正整数。
  1. 4 的约数:1、2、4
  2. 6的约数:1、 2、3、 6
  3. 4和6的最大公约数为2
最小公倍数lcm:Least Common Multiple
  • 是指能被两个或多个整数同时整除的最小正整数。
  1. 4的倍数:4,8,12,...
  2. 6的倍数:6,12,18,...
  3. 4和6的最小公倍数为12
gcd和lcm关系
  1. a * b = gcd(a,b) * lcm(a,b)
  2. a = 4,b =6
  3. gcd(a,b) = 2 ,lcm(a,b) = 12
  4. 4 * 6 = 2 * 12 = 24
互质

        两个或多个正整数的最大公约数为 1,即这些数之间没有除了 1 之外的公共因数。

  1. 2的约数:1,2
  2. 3的约数:1,3
  3. 4的约数:1,2,4
  4. 2和3没有除1以外的公约数,所以2和3互
  5. 2和4有除1以外的公约数2,所以2和4不互质
等差数列

 { a_{n}}公差大于零的等差数列:多个数字组成的数列,两两之间差相等,且后值减前值大于0,

  •   如:{-2,0,2,4}为公差数列为2的等差数列.

  • 因数是指整数a除以整数b(b≠0) 的商正好是整数而没有余数,10的因数为 2和5
  • 圆柱体表面积S_{1} =2πr² + 2πrh
  • 球体表名面积S_{2} = 4πR²
  • 圆面积 S = 2πr²
  • 圆周长 C = 2πr
  • 球体体积 V = \frac{4}{3} π r³
  • 矩形面积为边长相乘,S = x * y 
  • 长方体体积V = x * y * z
  • 正方体体积V = a³
  • 长方体的对角线 d² = a² + b²  + c² 
  • 正方体的对角线 d = \sqrt{3}a
  • 五线四心是三角形的垂线及其垂心,中线及其重心,角平分线及其内心,中垂线及其外心,以及中位线,统称五线四心。
  • 三角形面积 = 三角形底与高乘积的一半,记为S= \frac{1}{2} 底*高。
  • 等腰三角形面积 = \frac{1}{2} * 腰* 腰* sinC夹角;
  • 等腰直角三角形面积 =  \frac{1}{2} * a腰 * b腰
  • 勾股定理指直角三角形的两条直角边的平方和等于斜边的平方,c² = a²+b²
  • sin45°=\frac{\sqrt{2}}{2} ; sin30= \frac{1}{2}; sin60=\frac{\sqrt{3}}{2}
  • 扇形面积公式:角度数除以360再乘以π和边平方: ABO = C * π * a² ÷ 360
  • 一元二次方程求解 \frac{-b\pm \sqrt{b^{2}-4ac}}{2a}
  • 对于一个二次方程 ax²+ bx + c = 0,其判别式 b² - 4ac决定了该方程的根的性质。判别式的值决定了方程的解的类型:
    • 1. 如果 b² - 4ac> 0 ,则方程有两个不相等的实数根。
    • 2. 如果 b² - 4ac = 0 ,则方程有两个相等的实数根(重根)
    • 3. 如果 b² - 4ac < 0 ,则方程没有实数根,而是有两个共轭的复数根。
  • 方差:\frac{1}{n}((x_{1}-\overline{x})^{2}+x_{2}-\overline{x})^{2}+...+(x_{n}-\overline{x})^{2})
  • 根据完全平方公式(a+b)²=a²+2ab+b²、(a-b)²=a²-2ab+b²
  • 数学平方差公式 a²-b² = (a+b)(a-b)
  • 立方差公式:a³-b³=(a-b)(a²+ab+b²);
  • 立方和公式:a³+b³=(a+b)(a²-ab+b²);
  • 组合排列公式
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

lizz666

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值