最大公约数gcd:Greatest Common Divisor,
- 指能同时整除两个或多个整数的最大正整数。
- 4 的约数:1、2、4
- 6的约数:1、 2、3、 6
- 4和6的最大公约数为2
最小公倍数lcm:Least Common Multiple
- 是指能被两个或多个整数同时整除的最小正整数。
- 4的倍数:4,8,12,...
- 6的倍数:6,12,18,...
- 4和6的最小公倍数为12
gcd和lcm关系
- a * b = gcd(a,b) * lcm(a,b)
- a = 4,b =6
- gcd(a,b) = 2 ,lcm(a,b) = 12
- 4 * 6 = 2 * 12 = 24
互质
两个或多个正整数的最大公约数为 1,即这些数之间没有除了 1 之外的公共因数。
- 2的约数:1,2
- 3的约数:1,3
- 4的约数:1,2,4
- 2和3没有除1以外的公约数,所以2和3互
- 2和4有除1以外的公约数2,所以2和4不互质
等差数列
{
}公差大于零的等差数列:多个数字组成的数列,两两之间差相等,且后值减前值大于0,
- 如:{-2,0,2,4}为公差数列为2的等差数列.
- 因数是指整数a除以整数b(b≠0) 的商正好是整数而没有余数,10的因数为 2和5
- 圆柱体表面积
=2πr² + 2πrh
- 球体表名面积
= 4πR²
- 圆面积 S = 2πr²
- 圆周长 C = 2πr
- 球体体积 V =
π r³
- 矩形面积为边长相乘,S = x * y
- 长方体体积V = x * y * z
- 正方体体积V = a³
- 长方体的对角线 d² = a² + b² + c²
- 正方体的对角线 d =
a
- 五线四心是三角形的垂线及其垂心,中线及其重心,角平分线及其内心,中垂线及其外心,以及中位线,统称五线四心。
- 三角形面积 = 三角形底与高乘积的一半,记为S=
底*高。
- 等腰三角形面积 =
* 腰* 腰* sinC夹角;
- 等腰直角三角形面积 =
* a腰 * b腰
- 勾股定理指直角三角形的两条直角边的平方和等于斜边的平方,c² = a²+b²
- sin45°=
; sin30=
; sin60=
- 扇形面积公式:角度数除以360再乘以π和边平方: ABO = C * π * a² ÷ 360
- 一元二次方程求解
- 对于一个二次方程 ax²+ bx + c = 0,其判别式 b² - 4ac决定了该方程的根的性质。判别式的值决定了方程的解的类型:
- 1. 如果 b² - 4ac> 0 ,则方程有两个不相等的实数根。
- 2. 如果 b² - 4ac = 0 ,则方程有两个相等的实数根(重根)
- 3. 如果 b² - 4ac < 0 ,则方程没有实数根,而是有两个共轭的复数根。
- 方差:
- 根据完全平方公式(a+b)²=a²+2ab+b²、(a-b)²=a²-2ab+b²
- 数学平方差公式 a²-b² = (a+b)(a-b)
- 立方差公式:a³-b³=(a-b)(a²+ab+b²);
- 立方和公式:a³+b³=(a+b)(a²-ab+b²);
- 组合排列公式