各子区间和的异或和

本文探讨了如何使用算法来解决特定的数学问题,重点介绍了求解条件下的数学公式及其应用,通过实例演示了时间复杂度的计算和优化。文章详细分析了两个可能的情况,并给出了时间复杂度为O(nlognlog∑A)的解决方案。
摘要由CSDN通过智能技术生成

http://acm.tju.edu.cn/toj/showp4114.html

好感动~

终于过了

要使得(sum(r)sum(l1))mod2k+12k

其实就是两种情况

sum(l1)mod2k+1(sum(r)mod2k+1)2k
0sum(l1)mod2k+1
的,也可能是满足
sum(l1)mod2k+1(sum(r)mod2k+1)2k+2k=(sum(r)mod2k+1)+2k

sum(r)mod2k+1<sum(l1)mod2k+1

时间复杂度O(nlognlog


k = 3

 010 -------> 110

0 ------------->10         110 --------------->210(1010)

时间复杂度 O(nlognlogA)

#include <functional>
#include <algorithm>
#include <string.h>
#include <ctype.h>
#include <stdio.h>
#include <string>
#include <vector>
#include <queue>
#include <stack>
#include <cmath>
#include <set>
#include<cstdlib>
#include<math.h>
#include<iostream>
#include<limits.h>
#define ll long long
#define clr(a,b) memset(a,b,sizeof(a))
#define maxn  1000000
#define inf 0x3f3f3f3f
#define mod 1000000007

using namespace std;

int a[maxn+5];
int tree[2*maxn+5];
int n;
inline int low(int x)
{
    return x&(-x);
}

void update(int x)
{
    for(x=x*2+1; x <= 2*maxn; x+=low(x))
        tree[x]++;
}

int query(int x)
{
    int res = 0;
    for(x=x*2+1; x > 0; x -= low(x))//因为插入0的时候会死循环,我直接开了两倍空间,好浪费~~~
        res += tree[x];
    return res;
}

int main()
{
    int T;
    scanf("%d",&T);
    while(T--)
    {
        int ans = 0;
        scanf("%d",&n);
        a[0] = 0;
        for(int i = 1; i <= n; i++)
        {
            scanf("%d",a+i);
            a[i] += a[i-1];
        }
<span style="white-space:pre">	</span>
        for(ll k = 0; 1<<k <=  a[n]; k++)
        {
            clr(tree,0);
            int tmp = 0;
            for(int i = 1; i <= n; i++)
            {
                int w = a[i]&((1<<(k+1)) - 1);
                int f = 0;
                if(w&(1<<k)) f = 1;
                ll last = w + (1<<k);
                if(last > maxn)
                    last = maxn;
                tmp += f + query(w-(1<<k))+query(last)-query(w);
                update(w);
            }
            if(tmp&1)
                ans |= 1<<k;
        }
        printf("%d\n",ans);
    }
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值