深度学习基础15(softmax回归的基本实现)

本文详细介绍了softmax回归的实现过程,包括初始化模型参数、定义softmax操作、模型定义、损失函数、分类精度计算,并通过Fashion-MNIST数据集进行训练。文章通过实例展示了softmax回归在多分类任务中的应用,同时提到了数值稳定性问题和训练过程。
摘要由CSDN通过智能技术生成

softmax回归的从零开始实现

引入Fashion-MNIST数据集, 并设置数据迭代器的批量大小为256。

import torch
from IPython import display
from d2l import torch as d2l
batch_size = 256
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)

初始化模型参数

和之前线性回归的例子一样,这里的每个样本都将用固定长度的向量表示。

原始数据集中的每个样本都是28×28的图像。

在这里,将展平每个图像,把它们看作长度为784的向量。

现在暂时只把每个像素位置看作一个特征。

在softmax回归中,输出与类别一样多。

因为我们的数据集有10个类别,所以网络输出维度为10

因此,权重将构成一个784×10的矩阵, 偏置将构成一个1×10的行向量。

与线性回归一样,我们使用正态分布初始化权重W,偏置初始化为0。

拉成向量之后,自然会损失很多空间信息,这个工作就交给卷积神经网络了

num_inputs = 784
num_outputs = 10
#下面来定义权重
W = torch.normal(0, 0.01, size=(num_inputs, num_outputs), requires_grad=True)#w跟之前一样,初始化为正太(高斯)随机分布的值,均值为0,标准差为0.01,size=(num_inputs, num_outputs)很关键,行数为输入的个数784,列数为输出的个数10,requires_grad=True因为要计算梯度
b = torch.zeros(num_outputs, requires_grad=True)#对每个输出都要有个偏移,所以偏移为长为10的向量,同样需要计算梯度

定义softmax操作

在实现softmax回归模型之前,回顾一下sum运算符如何沿着张量中的特定维度工作。

给定一个矩阵X,我们可以对所有元素求和(默认情况下)。 也可以只求同一个轴上的元素,即同一列(轴0)或同一行(轴1)。

如果X是一个形状为(2, 3)的张量,我们对列进行求和, 则结果将是一个具有形状(3,)的向量。

当调用sum运算符时,可以指定保持在原始张量的轴数,而不折叠求和的维度。 这将产生一个具有形状(1, 3)的二维张量。

X = torch.tensor([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]])
X.sum(0, keepdim=True), X.sum(1, keepdim=True)

(tensor([[5., 7., 9.]]),

tensor([[ 6.],

​ [15.]]))

实现softmax由三个步骤组成:

  1. 对每个项求幂(使用exp);
  2. 对每一行求和(小批量中每个样本是一行),得到每个样本的规范化常数;
  3. 将每一行除以其规范化常数,确保结果的和为1。

回顾一下这个表达式:

(

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-4Fus7rhk-1648469639216)(C:\Users\Lenovo\Documents\Tencent Files\850604703\FileRecv\MobileFile\Image\3W[V54O0[HEC(Z_HXQTXFO3.png)]

)

分母或规范化常数,有时也称为配分函数(其对数称为对数-配分函数)。 该名称来自统计物理学中一个模拟粒子群分布的方程。

def softmax(X):#X是一个矩阵
    X_exp = torch.exp(X)#对每一个元素做指数运算
    partition = X_exp.sum(1, keepdim=True)#接下来按行进行求和
    return X_exp / partition  # 这里应用了广播机制,对于每一行都除以了partition中第i个元素

对于任何随机输入,我们将每个元素变成一个非负数。 此外,依据概率原理,每行总和为1

接下来,验证一下这个函数是否正确

X = torch.normal(0, 1, (2, 5))#创建一个随机的均值为0,标准差为1的两行五列的矩阵
X_prob = softmax(X)
X_prob, X_prob.sum(1)

(tensor([[0.0537, 0.5367, 0.1578, 0.1037, 0.1481],

​ [0.0389, 0.2514, 0.0509, 0.1715, 0.4873]]), #可以发现softmax没有改变形状,还是两行五列的形状,但是值都变为正的了

tensor([1., 1.]))

注意,虽然这在数学上看起来是正确的,但我们在代码实现中有点草率。 矩阵中的非常大或非常小的元素可能造成数值上溢或下溢,但我们没有采取措施来防止这点。

定义模型

定义softmax操作后,可以实现softmax回归模型

下面的代码定义了输入如何通过网络映射到输出。

注意,将数据传递到模型之前,使用reshape函数将每张原始图像展平为向量。

def net(X):#因为我们需要的是批量大小乘以输入维数的一个矩阵,所以X.reshape((-1, W.shape[0])), W)为一个2d的矩阵
    return softmax(torch.matmul(X.reshape((-1, W.shape[0])), W) + b)#-1意思是自己算一下批量大小是多少,这里是256,W.shape[0]是784,torch.matmul是矩阵乘法,把X和W相乘,在通过广播机制加上偏移b,最后放进softmax里面

定义损失函数

接下来,我们实现交叉熵损失函数。 这可能是深度学习中最常见的损失函数,因为目前分类问题的数量远远超过回归问题的数量。

交叉熵采用真实标签的预测概率的负对数似然。

下面补一个细节,怎么样在我的预测值里面根据我的标号把对应的预测值拿出来?

这里我们不使用Python的for循环迭代预测(这往往是低效的), 而是通过一个运算符选择所有元素。

下面

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

NDNPOMDFLR

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值