softmax回归的从零开始实现
引入Fashion-MNIST数据集, 并设置数据迭代器的批量大小为256。
import torch
from IPython import display
from d2l import torch as d2l
batch_size = 256
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)
初始化模型参数
和之前线性回归的例子一样,这里的每个样本都将用固定长度的向量表示。
原始数据集中的每个样本都是28×28的图像。
在这里,将展平每个图像,把它们看作长度为784的向量。
现在暂时只把每个像素位置看作一个特征。
在softmax回归中,输出与类别一样多。
因为我们的数据集有10个类别,所以网络输出维度为10。
因此,权重将构成一个784×10的矩阵, 偏置将构成一个1×10的行向量。
与线性回归一样,我们使用正态分布初始化权重W
,偏置初始化为0。
拉成向量之后,自然会损失很多空间信息,这个工作就交给卷积神经网络了
num_inputs = 784
num_outputs = 10
#下面来定义权重
W = torch.normal(0, 0.01, size=(num_inputs, num_outputs), requires_grad=True)#w跟之前一样,初始化为正太(高斯)随机分布的值,均值为0,标准差为0.01,size=(num_inputs, num_outputs)很关键,行数为输入的个数784,列数为输出的个数10,requires_grad=True因为要计算梯度
b = torch.zeros(num_outputs, requires_grad=True)#对每个输出都要有个偏移,所以偏移为长为10的向量,同样需要计算梯度
定义softmax操作
在实现softmax回归模型之前,回顾一下sum
运算符如何沿着张量中的特定维度工作。
给定一个矩阵X,我们可以对所有元素求和(默认情况下)。 也可以只求同一个轴上的元素,即同一列(轴0)或同一行(轴1)。
如果X
是一个形状为(2, 3)
的张量,我们对列进行求和, 则结果将是一个具有形状(3,)
的向量。
当调用sum
运算符时,可以指定保持在原始张量的轴数,而不折叠求和的维度。 这将产生一个具有形状(1, 3)
的二维张量。
X = torch.tensor([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]])
X.sum(0, keepdim=True), X.sum(1, keepdim=True)
(tensor([[5., 7., 9.]]),
tensor([[ 6.],
[15.]]))
实现softmax由三个步骤组成:
- 对每个项求幂(使用
exp
); - 对每一行求和(小批量中每个样本是一行),得到每个样本的规范化常数;
- 将每一行除以其规范化常数,确保结果的和为1。
回顾一下这个表达式:
(
)
分母或规范化常数,有时也称为配分函数(其对数称为对数-配分函数)。 该名称来自统计物理学中一个模拟粒子群分布的方程。
def softmax(X):#X是一个矩阵
X_exp = torch.exp(X)#对每一个元素做指数运算
partition = X_exp.sum(1, keepdim=True)#接下来按行进行求和
return X_exp / partition # 这里应用了广播机制,对于每一行都除以了partition中第i个元素
对于任何随机输入,我们将每个元素变成一个非负数。 此外,依据概率原理,每行总和为1。
接下来,验证一下这个函数是否正确
X = torch.normal(0, 1, (2, 5))#创建一个随机的均值为0,标准差为1的两行五列的矩阵
X_prob = softmax(X)
X_prob, X_prob.sum(1)
(tensor([[0.0537, 0.5367, 0.1578, 0.1037, 0.1481],
[0.0389, 0.2514, 0.0509, 0.1715, 0.4873]]), #可以发现softmax没有改变形状,还是两行五列的形状,但是值都变为正的了
tensor([1., 1.]))
注意,虽然这在数学上看起来是正确的,但我们在代码实现中有点草率。 矩阵中的非常大或非常小的元素可能造成数值上溢或下溢,但我们没有采取措施来防止这点。
定义模型
定义softmax操作后,可以实现softmax回归模型。
下面的代码定义了输入如何通过网络映射到输出。
注意,将数据传递到模型之前,使用reshape
函数将每张原始图像展平为向量。
def net(X):#因为我们需要的是批量大小乘以输入维数的一个矩阵,所以X.reshape((-1, W.shape[0])), W)为一个2d的矩阵
return softmax(torch.matmul(X.reshape((-1, W.shape[0])), W) + b)#-1意思是自己算一下批量大小是多少,这里是256,W.shape[0]是784,torch.matmul是矩阵乘法,把X和W相乘,在通过广播机制加上偏移b,最后放进softmax里面
定义损失函数
接下来,我们实现交叉熵损失函数。 这可能是深度学习中最常见的损失函数,因为目前分类问题的数量远远超过回归问题的数量。
交叉熵采用真实标签的预测概率的负对数似然。
下面补一个细节,怎么样在我的预测值里面根据我的标号把对应的预测值拿出来?
这里我们不使用Python的for循环迭代预测(这往往是低效的), 而是通过一个运算符选择所有元素。
下面